
Mining Supervision for Dynamic Regions in Self-Supervised Monocular
Depth Estimation

——Supplementary Material——

Hoang Chuong Nguyen1 Tianyu Wang1 Jose M. Alvarez2 Miaomiao Liu1

1Australian National University 2NVIDIA
{hoangchuong.nguyen, tianyu.wang2, miaomiao.liu}@anu.edu.au josea@nvidia.com

1. More Implementation Details
1.1. Loss Functions

Here, we provide detailed formulation of the losses we used
in the paper. In particular, we follow the definition of the
depth smoothness loss Ls in [3], the object-motion-sparsity
loss Lg in [13] and the photometric loss Lp in [4].
Depth smoothness loss. Given the depth map Dscene

r pre-
dicted by the depth network Θscene and the input image
I ∈ RH×W×3, the edge-aware smoothness loss [3] is com-
puted as,

Ls(D
scene
r , I) =

1

HW

∑
u,v

(|∂uDscene
r,⋆ (u, v)|e−|∂uI(u,v)|)

+
1

HW

∑
u,v

(|∂vDscene
r,⋆ (u, v)|e−|∂vI(u,v)|),

Dscene
r,⋆ (u, v) =

(Dscene
r (u, v))−1HW∑

u′,v′ (Dscene
r (u′, v′))−1

. (1)

Regarding the object depth Do
r produced by Θobj , we

enforce depth smoothness within the object mask M ∈
{0, 1}H×W×1 regardless of the object’s texture.

Ls(D
o
r,M) =

1∑
u,v M(u, v)

∑
u,v

|∂u(M(u, v)Do
r,⋆(u, v))|

+
1∑

u,v M(u, v)

∑
u,v

|∂v(M(u, v)Do
r,⋆(u, v))|,

Do
r,⋆(u, v) =

M(u, v)(Do
r(u, v))

−1 ∑
u′,v′ M(u′, v′)∑

u′,v′ M(u′, v′)(Do
r(u
′, v′))−1

Object-motion-sparsity loss [13].

Lg(∆r) = 2
∑

c∈{1,2,3}

⟨|∆c
r|⟩

∑
u,v

√
1 +

∆c
r(u, v)

⟨|∆c
r|⟩

, (2)

⟨|∆c
r|⟩ =

∑
u,v |∆c

r(u, v)|
HW

, (3)

with c is the channel index of the motion map ∆r.
Photometric loss [4] . We adopt the per-pixel minimum re-
projection loss and the method to mask out stationary pixels
proposed by [4]. Each training sample contains a triplet of
images at three different timesteps (It−1, It, It+1). The im-
age at the middle timestep It is used as reference image,
and the other two are used as source images. As a result,
we have two reconstructed images It←t−1 and It←t+1. The
first step is to derive the masks Mp that exclude stationary
pixels from the final photometric loss.

Mp(u, v) = [min
t′∈P

pe(It, It←t′)(u, v) < min
t′∈P

pe(It, It′)(u, v)],

pe(Is, Ir)(u, v) =
α

2
(1− SSIM(Ir, Is)(u, v))

+ (1− α)(|Ir(u, v)− Is(u, v)|),

with P = {t − 1, t + 1} and α is a hyper-parameter which
is set to 0.85 in our experiments. SSIM(·) is a function
to calculate image structural similarity index measure [18].
This function returns pixel-wise SSIM measure of shape
(H ×W × 1). In addition, pe(Ir, Is) ∈ RH×W ×1 is cal-
culated as pixel-wise photometric error. The final photo-
metric loss used in our framework is,

Lp =
1∑

u,v Mp(u, v)

∑
u,v

Mp(u, v) min
t′∈P

(pe(It←t′ , It)(u, v)).

1.2. Training the Scene Depth Network

The first stage of our proposed framework is to train (1) a
depth network Θscene to predict depth Dscene

r , (2) a camera
pose network Φcam to predict camera pose (Rcam,Tcam),
and (3) an object pixel-wise motion network Ψ to predict
object pixel-wise motion ∆r. However, jointly training all
three networks at the beginning could cause a trivial solu-
tion in which the predicted camera pose is wrong (for ex-
ample, Rcam = I, Tcam = 0), and the motions of all pix-
els (including pixels in both static and dynamic regions) are

accounted by the pixel-wise motion. Although correct pixel
correspondences between the two input images could still
be obtained, this phenomenon could lead to a degradation
in depth prediction .

To avoid this issue, our strategy is to train the three net-
works as follows,
• We firstly train the depth network Dscene

r and pose net-
work Φcam for Q epochs. In our experiments, we set
Q = 5 for the Cityscapes dataset and Q = 10 for the
KITTI dataset.

• After that, we freeze Θscene and Φcam and train only Ψ
for 1 epoch. The purpose of this step is for Ψ to learn
predicting object pixel-wise motion at the same scale as
the depth predicted by Θscene.

• We then jointly train all the three networks together.
This training stategy, together with the object-motion-
sparsity loss (Sec. 1.1) help to avoid the predicted pixel-
wise motion ∆r interfering with the learning process of the
camera pose network Φcam.

1.3. Self-supervised Ground Segmentation

We first derive the pseudo ground masks M̂gnd
r ∈

{0, 1}H×W×1. Specifically, given a camera intrinsic K, we
map the predicted depth Dscene

r into a point cloud and use it
for ground points detection following [19]. Then, we have
Mgnd

r (u, v) = 1 if the pixel (u, v) corresponds to a 3D
point that belongs to the ground. Mgnd

r (u, v) = 0, other-
wise. The loss function used to train Υgnd has two terms:
(1) a binary-cross entropy (BCE) loss between the model’s
prediction and the pseudo ground-truth masks, (2) the edge-
aware smoothness loss applied to the predicted mask.

Mgnd
r = Υgnd(Ir,D

scene
r), (4)

Lgnd = BCE(Mgnd
r , M̂gnd

r) + Ls(M
gnd
r , Ir). (5)

After training, Υgnd is utilized to predict ground masks
used in later stages. We set a threshold of 0.5 to convert
the model predictions from soft masks to binary masks.

1.4. Self-supervised Object Detection

Training the self-supervised object detection model can be
separated into two stages. In the first stage, we adopt the
SlotAttention [14] model Υobj

label to derive pseudo ground-
truth object masks. Since Υobj

label is only able to produce
masks of dynamic objects, we use its predictions as pseudo
label to train a MaskRCNN [9] model Υobj that is able to
predict masks for both static and dynamic objects.

1.4.1 Training the Slot Attention Model Υobj
label

The input to the the Slot Attention model consists of the
motion map ∆r and the depth for dynamic regions which

is derived based on the Dscene
r and ∆r (see details below).

The output of the framework includes the latent represen-
tation, the segmentation mask and the reconstruction corre-
sponding to each dynamic object.

Unlike [14] which draws slot representation qi from the
one Gaussian distribution, we have two different distribu-
tions, one for background and one for foreground including
L moving objects. As a result, the slot representation is ini-
tialized as below:

q0
init ∼ N (µbg, ϕbg), (6)

{ql
init}l∈{1,2,...,L} ∼ N (µfg, ϕfg), (7)

where L is a hyper-parameter indicating the maximum
number of moving objects in an image, N is a Gaussian dis-
tribution whose mean and standard deviation are µ and σ.
We set L = 4 in our experiments. The slot representations
are then decoded into (L + 1) updated slot representation
ql, (L+1) soft-masks Ml,label

r and (L+1) reconstructions
Wl,rec

r for the input pixel-wise motion ∆r and depth of the
dynamic region.

{Ml,label
r ,Wl,rec

r ,ql}l∈{0,1,...,L} = Υlabel
obj (Wr), (8)

Wr = Concatenate(M∆ ⊙∆r,M∆ ⊙Dscene
r), (9)

M∆(u, v) =

{
1 if ∥∆r(u, v)∥22 ≥ a

0 otherwise
(10)

with a is a hyper-parameter. The final reconstruction Wrec
r

could be derived from the model’s outputs, which is then
used to compute the reconstruction loss.

Wrec
r =

∑
l∈{0,1,...,L}

Ml,label
r ⊙Wl,rec

r . (11)

Simply training the model with the reconstruction loss be-
tween Wrec

r and Wr causes an object to be over-segmented
[14]. To avoid this, for each foreground mask with index
l ∈ {1, 2, . . . , L}, we predict a scalar zl ∈ [0, 1], represent-
ing a probability that the mask is empty.

zl = MLP (ql) (12)

with MLP denotes a multi-layer perceptron network. The
updated foreground mask M̃l,label

r (with l > 0), the updated
background mask M̃0,label

r and the updated reconstruction
W̃rec

r are then obtained,

M̃l,label
r (u, v) =

(zlMl,label
r (u, v))2∑

p∈{1,...,L} z
pMp,label

r (u, v)
, (13)

M̃0,label
r = 1−

∑
l∈{1,2,...,L}

M̃l,label
r , (14)

W̃rec
r =

∑
l∈{0,1,...,L}

M̃l,label
r ⊙Wl,rec

r . (15)

Subsequently, we compute the reconstruction loss between
the model’s input and the two reconstructions.

Lrecon =

∑
u,v (W

rec
r (u, v)−Wr(u, v))

2

HW

+

∑
u,v (W̃

rec
r (u, v)−Wr(u, v))

2

HW
.

Furthermore, we also encourage the predicted background
mask to be similar to the masks of static region (1 −M∆)
derived from the predicted pixel-wise motion.

Lbg = BCE(M0,label
r , (1−M∆))

+BCE(M̃0,label
r , (1−M∆)).

We additionally utilize a sparsity loss for the predicted zl.
This loss encourages the predicted foreground mask to be
empty, avoiding the over-segmentation of object masks.

Lz =
1

L

∑
l∈{1,2,...,L}

zl. (16)

The final loss used to train Υlabel
obj is,

Lslot = Lrecon + Lbg + Lz. (17)

Since the input into this model only contain information in
the dynamic region, Υlabel

obj fail to segment masks of static
objects. For this purpose, we firstly set a threshold for the
soft masks produced by Υlabel

obj and used them as pseudo
ground-truth object masks for training a MaskRCNN model
that is able to detect both static and dynamic objects.

1.4.2 Training the MaskRCNN Model Υobj

At this stage, we aim to use the masks produced by Υlabel
obj as

pseudo ground-truth objects to train the MaskRCNN model
Υobj . We make an observation that in the first few epochs,
Υobj is able to discover more objects, then it tends to overfit
to the noisy pseudo ground-truth masks and eventually fail
to detect static objects in an image. To avoid this, Υobj

is trained using the pseudo ground-truth mask for the first
E epochs. After that, we follow a self-training strategy in
which we use the model’s predictions as a new set of pseudo
ground-truth masks for training itself in the next training
epoch. By doing this, the model is able to detect both static
and dynamic objects.

Figure 1. Percentage of objects being detected by ours self-
supervised object detection model at each training epoch.

Fig. 1 shows the percentage of objects detected by our
self-supervised object detection model in the Cityscapes
dataset at each training epoch. For this dataset, we set
E = 2 in our experiments, which means that the self-
training strategy is applied starting from the third training
epoch. From the figure, it can be seen that the detection
rate of our model drop in the second iteration, indicating
it starts over-fitting to the noisy pseudo ground-truth masks
produced by Υobj

label and detecting less objects compared to
the first epoch. By following the self-training method, our
model is able to discover more objects from the third epoch
to the seventh epoch. After that, the curve remains stable as
the model converges to its own predictions.
Static/dynamic object classification. It is worth mention-
ing how we distinguish between static and dynamic ob-
ject in our framework. Here, we define two function: (1)
Intesect(M1,M2) that takes two masks as input and re-
turn the number of pixels (u, v) such that M1(u, v) =
M2(u, v) = 1, and (2) Size(M) =

∑
u,v M(u, v) that

computes a mask’s size. Given these two functions, the ob-
ject is classified as follows,

Object mask Mo
r is:

{
dynamic if Intesect(Mo

r,M∆)
Size(Mo

r)
≥ b

static otherwise

with b is set to 0.5 in our experiments.

2. Additional Results on WaymoOpen and
nuScene Dataset

We further train and evaluate our method on the Way-
moOpen [15] and the nuScene [2] dataset. Similar to [16],
we apply our method on top of two backbones of a depth
estimation network: Monodepth2 [4], and LiteMono [1].
We use the same dataset split and object masks as done in

Method Dynamic obj Static bg All
Abs ↓ A1 ↑ Abs ↓ A1 ↑ Abs ↓ A1 ↑

W
ay

m
o

Monodepth2 (M) [4] 0.749 0.416 0.152 0.810 0.173 0.797
Dynamo (M)[16] 0.234 0.674 0.122 0.862 0.130 0.851

Ours (M) 0.168 0.760 0.115 0.879 0.122 0.864
LiteMono (L) [1] 0.599 0.506 0.140 0.827 0.158 0.816
Dynamo (L) [16] 0.194 0.750 0.110 0.891 0.116 0.878

Ours (L) 0.150 0.802 0.108 0.896 0.112 0.887

N
uS

ce
ne

s

Monodepth2 (M) [8] 0.418 0.570 0.447 0.735 0.425 0.723
Dynamo (M)[16] 0.228 0.684 0.196 0.761 0.193 0.765

Ours (M) 0.183 0.764 0.178 0.828 0.172 0.828
LiteMono (L) [1] 0.502 0.517 0.431 0.734 0.419 0.720
Dynamo (L) [16] 0.198 0.753 0.184 0.781 0.179 0.787

Ours (L) 0.179 0.758 0.181 0.830 0.175 0.830

Table 1. Results on Waymo Open and nuScenes datasets. M:
Monodepth2 [4] depth network backbone. L: LiteMono [1] depth
network backbone. Abs: Absolute relative error. A1: Accuracy
metric δ < 1.25.

[16]. Note that our method is trained in a fully unsuper-
vised manner and the object masks are only used for evalu-
ation. Results in Tab. 1 shows that our method outperforms
[1, 4, 16] by a large margin in dynamic regions and we are
competitive in static regions. Fig. 2 shows examples of pre-
dicted object motions (visualized as optical flow maps) on
two different scenes.

Figure 2. Predicted object motions (visualized as optical flow map)

3. More Quantitative Results
Here, we show the comparison between previous works and
the models trained following our proposed framework with
more evaluation metrics. Following prior works [4, 12, 13],
for the Cityscape dataset, we use the ground-truth depth cal-
culated from the provided disparity map, whereas KITTI’s
ground-truth depth is derived from sparse LiDAR points.
The results for the Cityscapes dataset are shown from Tab.
2 to Tab. 4, and that for the KITTI dataset are shown from
Tab. 5 to Tab. 7. For each table, the best results are high-
lighted in bold. Additionally, our models are underlined
if it is better than all previous works. For dynamic re-
gions in both datasets, our models outperform all prior

works by large margins across different metrics. More-
over, we achieve the new state-of-the-art performance on
the Cityscapes dataset.

4. More Quanlitative Results
More qualitative results on both the Cityscapes dataset (Fig.
3 and Fig. 4) and the KITTI dataset (Fig. 5 and Fig. 6) are
shown in this section. Areas with more intense red color
in the error maps represent higher error. Since the ground-
truth depth used to evaluate the models on KITTI dataset are
created from sparse reprojected LiDAR points, we use the
improved ground-truth depth from [17] to visualize the error
map. This set of ground-truth depth is more dense as it is
accumulated from 5 consecutive LiDAR frames. However,
[17] excludes moving objects from their computed ground-
truth depth because the process of accumulating depth from
consecutive frames causes errors for the dynamic regions.
Therefore, for dynamic region, we fill the missing values
in the improved ground-truth depth with those derived from
applying SGM [10] to a pair of stereo images. The filled
ground-truth depth is then used to visualize the error map
for the KITTI dataset.

Dynamic Region (Cityscapes)

Method
Sematic

prior
Error metrics Accuracy metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2* [4] 0.286 6.036 8.760 0.298 0.716 0.877 0.936
Li et al.* [13] 0.188 1.654 5.341 0.220 0.735 0.93 0.976
InstaDM [12] ✓ 0.189 2.538 5.723 0.216 0.795 0.932 0.972
RMDepth [11] – – – – – – –

DaCNN [8] – – – – – – –
ResNet18 [5] + Ours 0.107 0.784 3.790 0.145 0.907 0.970 0.987
ResNet18 [5] + Ours ✓ 0.100 0.647 3.653 0.139 0.911 0.973 0.989
PackNet [6] + Ours 0.112 0.703 3.694 0.146 0.890 0.969 0.989
PackNet [6] + Ours ✓ 0.104 0.666 3.650 0.141 0.901 0.972 0.989
DiffNet [20] + Ours 0.113 0.657 3.592 0.144 0.889 0.970 0.988
DiffNet [20] + Ours ✓ 0.105 0.692 3.706 0.142 0.893 0.974 0.989

BrNet [7] + Ours 0.119 0.670 3.596 0.148 0.872 0.964 0.988
BrNet [7] + Ours ✓ 0.106 0.577 3.519 0.138 0.892 0.975 0.991

Table 2. Comparison between our models and previous works on the Cityscapes dataset (dynamic region).

Static Region (Cityscapes)

Method
Sematic

prior
Error metrics Accuracy metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2* [4] 0.119 1.461 6.601 0.173 0.877 0.968 0.989
Li et al.* [13] 0.118 1.198 7.179 0.187 0.835 0.954 0.985
InstaDM [12] ✓ 0.102 1.058 6.026 0.156 0.895 0.974 0.991
RMDepth [11] – – – – – – –

DaCNN [8] – – – – – – –
ResNet18 [5] + Ours 0.093 0.961 5.850 0.150 0.907 0.976 0.991
ResNet18 [5] + Ours ✓ 0.091 0.931 5.962 0.151 0.904 0.975 0.991
PackNet [6] + Ours 0.090 0.858 5.750 0.146 0.909 0.977 0.992
PackNet [6] + Ours ✓ 0.089 0.859 5.784 0.145 0.908 0.977 0.993
DiffNet [20] + Ours 0.083 0.775 5.537 0.139 0.919 0.980 0.993
DiffNet [20] + Ours ✓ 0.082 0.781 5.467 0.136 0.921 0.981 0.994

BrNet [7] + Ours 0.080 0.736 5.400 0.136 0.922 0.980 0.993
BrNet [7] + Ours ✓ 0.080 0.717 5.392 0.135 0.923 0.982 0.994

Table 3. Comparison between our models and previous works on the Cityscapes dataset (static region).

All Region (Cityscapes)

Method
Sematic

prior
Error metrics Accuracy metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2* [4] 0.127 1.678 6.730 0.182 0.872 0.964 0.986
Li et al.* [13] 0.119 1.186 7.052 0.188 0.833 0.953 0.985
InstaDM [12] ✓ 0.106 1.104 5.994 0.161 0.890 0.972 0.990
RMDepth [11] 0.100 0.839 5.774 0.154 0.895 0.976 0.993

DaCNN [8] 0.113 1.380 6.305 – 0.888 – –
ResNet18 [5] + Ours 0.094 0.931 5.751 0.150 0.906 0.975 0.991
ResNet18 [5] + Ours ✓ 0.092 0.895 5.847 0.151 0.903 0.975 0.991
PackNet [6] + Ours 0.091 0.831 5.647 0.147 0.908 0.976 0.992
PackNet [6] + Ours ✓ 0.090 0.830 5.679 0.146 0.908 0.977 0.993
DiffNet [20] + Ours 0.085 0.753 5.435 0.140 0.916 0.979 0.993
DiffNet [20] + Ours ✓ 0.083 0.757 5.375 0.137 0.919 0.980 0.993

BrNet [7] + Ours 0.084 0.722 5.305 0.138 0.918 0.979 0.993
BrNet [7] + Ours ✓ 0.081 0.696 5.293 0.135 0.921 0.981 0.993

Table 4. Comparison between our models and previous works on the Cityscapes dataset (all region).

Dynamic Region (KITTI)

Method
Sematic

prior
Error metrics Accuracy metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

PackNet [6] 0.213 2.820 6.361 0.312 0.762 0.866 0.923
DiffNet [20] 0.177 2.072 5.942 0.298 0.792 0.889 0.930
BrNet* [7] 0.183 1.715 5.673 0.289 0.760 0.891 0.937

RMDepth [11] – – – – – – –
DaCNN [8] – – – – – – –

DiffNet [20] + Ours 0.158 1.468 5.288 0.275 0.838 0.910 0.938
DiffNet [20] + Ours ✓ 0.143 1.191 5.095 0.268 0.845 0.911 0.941

BrNet [7] + Ours 0.160 1.273 5.157 0.269 0.812 0.906 0.943
BrNet [7] + Ours ✓ 0.162 1.207 5.099 0.267 0.812 0.907 0.945

Table 5. Comparison between our models and previous works on the KITTI dataset (dynamic region).

Static Region (KITTI)

Method
Sematic

prior
Error metrics Accuracy metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

PackNet [6] 0.108 0.814 4.647 0.184 0.883 0.962 0.983
DiffNet [20] 0.101 0.743 4.444 0.176 0.899 0.967 0.984
BrNet* [7] 0.104 0.702 4.530 0.179 0.885 0.964 0.985

RMDepth [11] – – – – – – –
DaCNN [8] – – – – – – –

DiffNet [20] + Ours 0.101 0.687 4.416 0.177 0.894 0.966 0.984
DiffNet [20] + Ours ✓ 0.099 0.658 4.471 0.176 0.895 0.966 0.984

BrNet [7] + Ours 0.103 0.690 4.464 0.177 0.889 0.964 0.985
BrNet [7] + Ours ✓ 0.102 0.673 4.496 0.176 0.889 0.965 0.985

Table 6. Comparison between our models and previous works on the KITTI dataset (static region).

All Region (KITTI)

Method
Sematic

prior
Error metrics Accuracy metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

PackNet [6] 0.110 0.834 4.661 0.188 0.881 0.960 0.982
DiffNet [20] 0.102 0.753 4.459 0.179 0.897 0.965 0.983
BrNet* [7] 0.106 0.711 4.536 0.182 0.884 0.963 0.984

RMDepth [11] 0.108 0.710 4.513 0.183 0.884 0.964 0.983
DaCNN [8] 0.099 0.661 4.316 0.173 0.897 0.967 0.985

DiffNet [20] + Ours 0.102 0.693 4.422 0.180 0.892 0.965 0.983
DiffNet [20] + Ours ✓ 0.100 0.662 4.473 0.179 0.894 0.965 0.983

BrNet [7] + Ours 0.103 0.692 4.464 0.179 0.888 0.963 0.984
BrNet [7] + Ours ✓ 0.103 0.675 4.492 0.179 0.888 0.964 0.984

Table 7. Comparison between our models and previous works on the KITTI dataset (all region).

Im
ag

e
&

G
t

[4
]

[1
3]

[1
2]

O
ur

s
O

ur
s

+
[2

1]

Error Map Depth Estimation Error Map Depth Estimation

Figure 3. Qualitative results 1 (Cityscapes).

Im
ag

e
&

G
t

[4
]

[1
3]

[1
2]

O
ur

s
O

ur
s

+
[2

1]

Error Map Depth Estimation Error Map Depth Estimation

Figure 4. Qualitative results 2 (Cityscapes).

Im
ag

e
&

G
t

[6
]

[7
]

[2
0]

O
ur

s
O

ur
s

+
[2

1]

Error Map Depth Estimation Error Map Depth Estimation

Figure 5. Qualitative results 1 (KITTI).

Im
ag

e
&

G
t

[6
]

[7
]

[2
0]

O
ur

s
O

ur
s

+
[2

1]

Error Map Depth Estimation Error Map Depth Estimation

Figure 6. Qualitative results 1 (KITTI).

References
[1] Lite-mono: A lightweight cnn and transformer architecture

for self-supervised monocular depth estimation. In CVPR,
2023. 3, 4

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 3

[3] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 270–279,
2017. 1

[4] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3828–3838,
2019. 1, 3, 4, 5, 7

[5] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia
Angelova. Depth from videos in the wild: Unsupervised
monocular depth learning from unknown cameras. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8977–8986, 2019. 5

[6] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 2485–2494, 2020. 5, 6, 8

[7] Wencheng Han, Junbo Yin, Xiaogang Jin, Xiangdong Dai,
and Jianbing Shen. Brnet: Exploring comprehensive features
for monocular depth estimation. In European Conference on
Computer Vision, pages 586–602. Springer, 2022. 5, 6, 8

[8] Wencheng Han, Junbo Yin, and Jianbing Shen. Self-
supervised monocular depth estimation by direction-aware
cumulative convolution network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 8613–8623, 2023. 5, 6

[9] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017. 2

[10] Heiko Hirschmuller. Stereo processing by semiglobal match-
ing and mutual information. IEEE Transactions on pattern
analysis and machine intelligence, 30(2):328–341, 2007. 4

[11] Tak-Wai Hui. Rm-depth: Unsupervised learning of recur-
rent monocular depth in dynamic scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1675–1684, 2022. 5, 6

[12] Seokju Lee, Sunghoon Im, Stephen Lin, and In So Kweon.
Learning monocular depth in dynamic scenes via instance-
aware projection consistency. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1863–1872,
2021. 4, 5, 7

[13] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser, and
Anelia Angelova. Unsupervised monocular depth learning

in dynamic scenes. In Conference on Robot Learning, pages
1908–1917. PMLR, 2021. 1, 4, 5, 7

[14] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. Advances in Neural In-
formation Processing Systems, 33:11525–11538, 2020. 2

[15] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020. 3

[16] Yihong Sun and Bharath Hariharan. Dynamo-depth: Fixing
unsupervised depth estimation for dynamical scenes. Ad-
vances in Neural Information Processing Systems, 36, 2024.
3, 4

[17] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In 2017 international conference on 3D Vision (3DV), pages
11–20. IEEE, 2017. 4

[18] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 1

[19] Feng Xue, Guirong Zhuo, Ziyuan Huang, Wufei Fu,
Zhuoyue Wu, and Marcelo H Ang. Toward hierarchical
self-supervised monocular absolute depth estimation for au-
tonomous driving applications. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 2330–2337. IEEE, 2020. 2

[20] Hang Zhou, David Greenwood, and Sarah Taylor. Self-
supervised monocular depth estimation with internal feature
fusion. arXiv preprint arXiv:2110.09482, 2021. 5, 6, 8

[21] Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li,
Jianfeng Gao, and Yong Jae Lee. Segment everything every-
where all at once. arXiv preprint arXiv:2304.06718, 2023.
7, 8

	. More Implementation Details
	. Loss Functions
	. Training the Scene Depth Network
	. Self-supervised Ground Segmentation
	. Self-supervised Object Detection
	Training the Slot Attention Model objlabel
	Training the MaskRCNN Model obj

	. Additional Results on WaymoOpen and nuScene Dataset
	. More Quantitative Results
	. More Quanlitative Results

