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1. Implementation details

Our implementation of U-Net is mainly based on
denoising-diffusion-pytorch [4]. The encoder receives as
input an image embedding of size 8 × 32 × 32 and en-
codes it into a 1024 × 4 × 4 representation. The decoder
takes as input this representation and intermediate repre-
sentations from the encoder through skip connections, and
decodes them into an embedding of same size representing
the novel view.

Both the encoder and decoder consist of four layers, each
of which comprises a residual block, a cross-attention layer
that facilitates the injection of pose embeddings into feature
maps, and a convolution followed by group normalization
and the SiLU activation function.

We show in Figure 1 an overview of the U-Net architec-
ture we use to generate the novel views’ embeddings.

2. Additional results

We provide in Table 1 the 3D pose estimation results of
the baselines [1–3,5] and our method on novel instances and
novel categories of ShapeNet dataset, as detailed in Section

Figure 1. Architecture of our U-Net.

4 of the main paper, with standard deviation computed on 5
runs with 5 different reference images.

We also show in Figures 2 and 3 some additional results
on unseen categories without and with occlusions.
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ViewNet [1] 77.5 ± 4.2 48.4 ± 2.4 36.2 ± 4.8 23.5 ± 3.1 16.4 ± 4.1 37.8 ± 8.1 31.3 ± 5.2 17.9 ± 4.1 33.9 ± 4.8 44.8 ± 4.1 25.1 ± 4.8 35.7 ± 4.4
SSVE [2] 75.3 ± 3.2 61.5 ± 2.2 38.2 ± 3.7 41.8 ± 3.1 21.3 ± 2.9 46.8 ± 8.7 38.4 ± 4.6 36.8 ± 3.6 62.3 ± 4.1 41.5 ± 3.5 50.8 ± 3.5 46.8 ± 4.6
PIZZA [3] 72.3 ± 3.5 76.0 ± 2.8 38.6 ± 5.1 38.5 ± 2.7 32.6 ± 5.1 30.8 ± 8.6 35.6 ± 4.2 40.4 ± 2.3 58.3 ± 3.1 52.9 ± 5.1 61.0 ± 4.6 48.8 ± 3.8
3DiM [5] 77.3 ± 2.1 95.1 ± 1.9 43.5 ± 4.1 23.6 ± 3.2 24.5 ± 2.6 36.0 ± 5.3 32.0 ± 3.1 31.9 ± 2.5 50.3 ± 3.5 37.0 ± 3.2 56.1 ± 2.9 46.1 ± 3.6
Ours (top 1) 75.5 ± 1.3 96.0 ± 1.1 53.6 ± 3.2 48.0 ± 2.1 48.0 ± 1.8 49.0 ± 5.1 44.6 ± 2.3 69.0 ± 3.1 57.8 ± 2.8 55.2 ± 2.3 60.6 ± 2.0 59.8 ± 3.1

Ours (top 3) 92.0 ± 1.5 97.4 ± 0.9 83.8 ± 2.5 73.4 ± 3.6 78.5 ± 2.2 66.8 ± 4.5 56.0 ± 2.0 83.8 ± 3.1 86.2 ± 2.2 86.0 ± 1.9 84.4 ± 2.0 80.8 ± 2.1
Ours (top 5) 95.5 ± 0.8 97.8 ± 0.2 89.8 ± 2.0 80.4 ± 3.0 88.2 ± 2.0 74.6 ± 4.6 62.8 ± 2.1 88.4 ± 2.6 92.8 ± 2.0 95.4 ± 1.7 93.4 ± 2.1 87.1 ± 1.7
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ViewNet [1] 6.6 ± 5.0 26.7 ± 3.5 35.8 ± 5.1 40.3 ± 4.6 96.3 ± 3.0 50.6 ± 6.9 51.6 ± 4.1 42.8 ± 4.1 37.4 ± 3.7 26.8 ± 3.1 44.3 ± 2.9 41.7 ± 4.9
SSVE [2] 6.1 ± 3.1 23.8 ± 2.6 45.2 ± 3.0 41.9 ± 3.3 90.4 ± 2.3 47.6 ± 7.6 49.6 ± 4.1 24.0 ± 2.9 13.5 ± 3.8 24.9 ± 4.1 48.1 ± 3.8 37.7 ± 4.2
PIZZA [3] 5.8 ± 2.6 25.5 ± 3.4 26.4 ± 4.1 43.2 ± 4.1 80.6 ± 2.7 40.2 ± 5.1 45.5 ± 4.5 23.4 ± 2.1 17.3 ± 3.1 20.3 ± 5.1 38.5 ± 5.1 33.3 ± 4.7
3DiM [5] 5.7 ± 3.1 1.8 ± 2.4 19.8 ± 3.5 47.3 ± 3.7 98.8 ± 2.9 35.2 ± 5.8 35.7 ± 2.5 21.2 ± 2.8 12.5 ± 2.9 17.6 ± 2.5 19.2 ± 2.6 28.6 ± 3.0
Ours (top 1) 8.1 ± 1.3 1.8 ± 1.1 18.4 ± 3.2 39.9 ± 2.1 77.6 ± 1.8 31.6 ± 5.1 35.5 ± 2.3 13.4 ± 3.1 15.5 ± 2.8 18.3 ± 2.3 8.5 ± 2.0 24.4 ± 3.1

Ours (top 3) 5.0 ± 1.0 1.3 ± 0.7 5.8 ± 3.6 9.1 ± 2.1 4.8 ± 2.2 16.0 ± 4.1 22.6 ± 3.1 8.1 ± 1.8 6.5 ± 1.6 6.7 ± 2.6 5.7 ± 2.6 8.3 ± 2.4
Ours (top 5) 4.5 ± 0.8 1.2 ± 0.6 4.5 ± 3.0 7.1 ± 2.0 4.4 ± 2.1 11.6 ± 3.1 18.4 ± 2.6 6.1 ± 2.4 5.6 ± 1.7 4.9 ± 2.0 5.0 ± 2.8 6.6 ± 2.1

Table 1. Quantitative results on ShapeNet dataset. We treat “bottle” as a symmetric category, i.e., the error is only the difference of
elevation angle. Since the quality of prediction may depend on the reference image, we report the average and the standard deviation of 5
runs with 5 different reference images.
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Figure 2. Visual results on unseen categories from ShapeNet, without occlusions. The arrow indicates the pose with the highest
probability as recovered by our method. We visually compare to PIZZA, which is the method with the second best performance. We
visualize the predicted poses by rendering the object from these poses, but the 3D model is only used for visualization purposes,
not as input to our method. Similarly, we use the canonical pose of the 3D model to visualize this distribution, but not as input to
our method.
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Figure 3. Visual results on unseen categories from ShapeNet, with occlusions. The arrow indicates the pose with the highest probability
as recovered by our method. We visually compare with PIZZA, which is the method with the second best performance. We visualize the
predicted poses by rendering the object from these poses, but the 3D model is only used for visualization purposes, not as input to
our method. Similarly, we use the canonical pose of the 3D model to visualize this distribution, but not as input to our method.
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