
SwiftBrush: One-Step Text-to-Image Diffusion Model
with Variational Score Distillation

Supplementary Material

6. Additional Details

Training Cost. When training our model on a single A100
40GB GPU, we can use a batch size of up to 16 and ap-
proximately 15, 825 training iterations per day. Specifically,
we train the model with 65, 000 gradient updates. There-
fore, distilling Stable Diffusion using SwiftBrush requires
65, 000/15, 825 ≈ 4.11 A100 GPU days. Additionally,
even though the original BOOT requires 500, 000 iterations
to be fully trained as reported in [9], our re-implementation
only needs about 100, 000 to converge, which takes approx-
imately 100, 000/18, 000 ≈ 5.56 A100 GPU day with a
batch size of 16 per GPU.

Inference Speed. Next, we measure the inference time of
our method using a batch size of 1 on an A100 40GB GPU.
The inference time of one-step UNet to generate the latent
from random noise is 25 ms, while those of text encoder
and VAE are 80 ms and 5 ms, respectively. Consequently,
the total inference time of SwiftBrush is 25+80+5 = 110
ms. Furthermore, the speed of the text encoder and VAE
in BOOT are the same as ours; however, there is a small
overhead in the UNet (30ms) as additional layers are used.
Therefore, the total inference time for BOOT is 115ms.

Memory Requirement. Furthermore, we evaluate Swift-
Brush’s memory consumption during both training (with a
batch size of 16) and inference (with a batch size of 1) on
an A100 GPU. Since our approach involves training only
a student and an additional low-rank LoRA weight for our
LoRA teacher, it maintains a minimal memory footprint.

Compare with Others. We also sum up inference speed,
training time and memory requirements of existing methods
and ours in Tab. 3. In terms of training costs, Guided Dis-
tillation and InstaFlow [21] require a considerable amount
of training time, limiting their practical use. Conversely,
LCM converges quickly but produces poor-quality images
with one-step inference. Our method, however, offers both
efficiency and high-quality output.

7. Additional Visual Results

Uncurated Samples. We display uncurated images condi-
tioned on 25 random text prompts*. The images generated
by various models are presented in Fig. 8, 9, 10 and 11 for
a better visual comparison between our model and others.

*https://thuanz123.github.io/swiftbrush/assets/prompts.txt

Method
Training Inference

Time (GPU days) Memory (GB) Time (ms) Memory (GB)

Guided Distillation 108.8† - - -
LCM 1.3† 33.6∗ 118∗ 11.3∗

InstaFlow 199.2† - 116∗ 12.3∗

BOOT‡ 5.6 30.2 115 8.3
Ours 4.1 26.4 110 8.2

Table 3. Comparison of our method against other works on in-
ference and training time/memory. † means that we obtain the
numbers from the corresponding papers. ∗ means that we obtain
the numbers using the official code of the corresponding papers.
‡ means that we re-implement the work and report the numbers.
The units for inference speed, training time and memory usage are
miliseconds, A100 GPU days and gigabytes, respectively.

Additional Visuals of Analysis. To further back up our
claim in Sec. 4.3, we provide some uncurated samples us-
ing the text prompt “An DSLR photo of a tiger in the city“.
The images generated by four configurations at every 2000
iterations are presented in Fig. 14 for a better visual com-
parison of each component’s importance in our proposed
method across different training stages.

Additional Visuals of Interpolation. Apart from investi-
gating the role of each component in SwiftBrush, we also
explore its properties when interpolating text prompt con-
dition y (Fig. 12) or noise input z (Fig. 13). It is evident
that our model generates a seamless transition in the output,
showcasing excellent editability and controllability.

8. Additional Quantitative Results
We run SwiftBrush on CIFAR-10 32 × 32 and class-
conditional ImageNet 64 × 64 benchmarks using EDM
teacher models and compare it with Progressive Distillation
(PD) and Consistency Distillation (CD), either using L2 or
LPIPS loss, in Tab. 4. SwiftBrush is on par with CD-LPIPS
and it significantly outperforms the others.

Method Steps CIFAR-10 32× 32 ImageNet 64× 64
PD 1 8.34 15.39
CD - L2 1 7.90 12.10
CD - LPIPS 1 3.55 6.20
Ours 1 4.46 5.85
EDM 35 1.97 -
EDM 79 - 2.44

Table 4. Comparison of our method against other works in FID on
CIFAR-10 (32× 32) and ImageNet (64× 64) benchmarks.



Figure 8. Uncurated samples from one-step SwiftBrush.



Figure 9. Uncurated samples from one-step InstaFlow. We use their provided pretrained model to generate.



Figure 10. Uncurated samples from one-step BOOT. We re-implement and generate the images by ourselves.



Figure 11. Uncurated samples from one-step LCM. We use their provided pretrained model to generate.



Dog Cat

Figure 12. Results of interpolating the input prompt. The prompts used here are selected from a standard template: “A DSLR photo of a
{animal} reading a book”. Here, ‘animal’ is dog or cat and we interpolate the text embedding using linear interpolation (Lerp). Same
noise input z is used for images at each row.



z1 z2

Dog

Cat

Owl

Racoon

Figure 13. Results of interpolating the noise input. The prompts used here are selected from a standard template: “A DSLR photo of a
{animal} reading a book”. Here, ‘animal’ is dog, cat, owl or racoon and we interpolate the noise input using spherical linear interpolation
(Slerp). Same text input y is used for images at each row.



(1)

(2)

(3)

2000 4000 6000 8000 10000

(4)

Figure 14. Visual results of the ablative study, where the all images are generated with the input prompt “An DSLR photo of a tiger in
the city“. Images at same column are generated at the same iteration of training, whereas those at same row are generated using the same
configuration. Here, (1) means “Full”, (2) means “SDS”, (3) means “Small-Rank LoRA” and (4) means “No Parameterization”.


