() )CHAIN: Enhancing Generalization in Data-Efficient GANs via lipsCHitz
continuity constrAIned Normalization (Supplementary Material)

Yao Nif  Piotr Koniusz*%f
"The Australian National University ~ $Data61YCSIRO

Tfirstname. lastname@anu.edu.au

The supplementary material contains notations (§A), theoretical proofs (§B), an explanation for stochastic M design (§C),
implementation guidelines (§D), extra experimental results (§E), training overhead (§F), and examples of generated images

$G).
A. Notations

Below, we explain the notations used in this work.

Scalars: Represented by lowercase letters (e.g., m, n, p).

Vectors: Bold lowercase letters (e.g., x, z, p).

Matrices: Bold uppercase letters (e.g., W, M, H).

Functions: Letters followed by brackets (e.g., (), h(+), diag(-)).

Function sets: Calligraphic uppercase letters are used (e.g., H, G, F). But note B specifically denotes the Bernoulli distri-
bution.

Probability measures: Denoted by letters y, v, 7, p and p..

Expectation: E[-] represents the average or expected value of a random variable.

B. Proofs

We start with a lemma on the Pac-Bayesian bound, followed by in-depth proofs for the theories outlined in the main paper.

Lemma B.1 (A variant of the PAC-Bayesian bound adapted from Theorem 4.1 in [2] and from [10].) Let D be a distribution
over X. Denote the prior and posterior probability measure on a hypothesis set F as w(-), p(-) € M2, where M. (positive

and normalized to 1) is the set of all probability measures on F. Denote ¢ : F x X — R and E% := Ep[¢] as the loss. For
a > 0and § € (0, 1], with probability at least 1 — § over the choice of © ~ D™ (a subset from D with size of n), we have:

EysLh(f) < Epplipn(F) + —[KL(Am) +1n 5 + e m)|
where Qa,n) =InE; Epn exp {a(ﬁ%(f) - E%n ()} (17)
Proof: The Donsker-Varadhan change of measure states that for any measurable function ¢: F — R and Vp on F, we have:
Ejpo(f) < KL(|I7) + InEjre?).
Denoting ¢(f) := a(Lp(f) — L. (f)), the above inequality yields:
a(Ep~pLp(f) = Efnslpn(f)) = Epvpa(LH(f) = L5 ()
< KL(p|7) + In Efwﬂea(ﬁ%(f)—fgn(f)).
Applying Markov’s inequality to the random variable £, (X) := E fwrea(ﬂ%(f )=Lon (f )), we obtain:
Pr(¢, < %E[{W]) >1—0.
Thus, with probability at least 1 — & over the choice of x ~ D", we obtain:

A 1 1 7
B pLO(f) < Epplhn(f) + E[KL(ﬁHw) +In s +1n EJ-N,,ED"eaw%(f)fﬁ%n<f>>].



B.1. Proof of Lemma 3.1

Lemma 3.1 (Partial results of Theorem 1 in [32].) Assume the discriminator set H is even, i.e., h € H implies —h € H and
lh|lo< A. Let fiy, and ©,, be empirical measures of p and vy, with size n. Denote v} = inf,eg dy;(fin, V). The generalization
error of GAN, defined as €gap 1= dp(pt, V) — infeg dp (1, v), is bounded as:

o < 2(5up [E,[] — By [1]] + sup [Bys [2] — o [B]]) = 2ag (1, fin) + 2 (5, 2.
heH heH
Proof:
€gan ::dH(Ma Vn) - ;Ielg dH(M) V) = dH(Nv Vn) - dﬂ(ﬂna Vn) + dH(/lna Vn) - zirelg dH(,uv V)

=dy (1, Vn) — A (fin, vn) + Inf dyy (fin, v) — inf dy (1, V) + dag(fin, vn) — Inf dyy (fin, v) .
veG veG veG

_ -

® ) ®
The three components in the above equation are upper-bounded as follows:
Upper bound @ :

dyy (b, vn) = dy(fin, vn) = sup [Ey[h] — By, [h]| = sup [Ep, [h] — E,, [A]]
heH heH

<sup|E,[h] — E,, [h] — Ep, [R] + E,, [R]| = sup |E,[R] — Eg, [A]].
heH heH
Upper bound @ : Denote v* = inf,cg dy; (14, v). Then similar to derivation for (D, we obtain:

inf dyq(fin,v) — inf dy(p, v) = inf dy(fin, v) — dy(p, v*)
veG veG veg
<y (fin, v) = (") < sup [Ey[h] — Ep, [1]].
€

Upper bound @ : Here, we consider a practical scenario where the discriminator only has access to finite fake data during
optimization. Recall that we denote v* := inf,cg dy (fin, V), thus dy (fin, Vn) = dy(fin, V), leading to the inequality that:

d?—l(ﬂnv”n) - 11)1615 d’f—[(ﬂnv”) = d’H(ﬂnvyn) - d?‘[(ﬂ’ful/:)

:(dH(ﬂm Vn) — da(fin, ﬁn)) + (dﬂ(ﬂna Un) — dyg(fin, V:))
<sup [E,, [h] — By, [h]] + sup [E, x[h] — Ey, [k]| < 2sup |E,«[h] — E;, [A]|.
heH heH ) heH )

Integrating the three bounds we achieve the final result.

B.2. Proof of Proposition 3.1

Proposition 3.1 Utilizing notations from Lemma 3.1, we define €y, as the generalization error of GAN parameterized as

neural network classes. Let Vg, and H g, represent the gradient and Hessian matrix of discriminator h evaluated at 04

over real training data fi,,, and V g, and H g, over observed fake data v,,. Denoting NEL _and L as the largest eigenvalues

max max
of Hg, and Hg , respectively, and for any w > 0, the generalization error is bounded as:

nn o H9d||2 1 H
€oan <2("}(HV0d”2 + ||V9d||2) + 4R<w227 ﬁ + wz(‘)‘rIrgzx| + |>‘rIt;£1x )’

2
where R(”i}#, %) a term related to discriminator weights norm, is inversely related to the data size n.
Proof: We start by deriving a PAC-Bayesian bound for GAN generalization error on real data. This is followed by an
approach similar to Theorem 1 in [21], establishing a connection between this error and the discriminator’s gradient direction.
Finally, a Taylor expansion of the discriminator in the gradient direction is applied, paralleled by a similar formulation for

fake data, culminating in our final results.

PAC-Bayesian bound for GAN. Denoting £,, := E,[h] and the parameter of the discriminator as 8; € ®, and applying
Lemma B.1, we obtain:

~ 1 R 1
Eo,~pLu(04) < Eo,~pL3, (04) + — |KL(3]m) +1n 5 + Q(a,m)|

where  Q(a,n) = InEg, K, exp{a(L.(04) — Ls,(04))}. (18)
We then derive the upper bound for 2(a,n) on the discriminator. Let ¢; represent a realization of the random variable
L, — h(x;;04). Given that h € [-A, A] stated in Lemma 3.1, changing variable x; to another independent copy «;, alters



£; by at most %. Utilizing Hoeffding’s lemma, we obtain:

L£,(04)—Lg, (0 = a
Ep, e Fnl@)=Lan(60) — |, exp{ 25 } = HEGXP{E&}

nexp{ 2} = exp{a;jQ}. (19)

By inserting Eq. 19 into Eq. 18, and setting o = n, we arrive at:

~ 1 ) 1 A?

Eo,~pLyu(0a) < Eg,~5Lp,(0a) + E[KL(pr) +1In 5] 5 (20)
Generalization error and the gradient direction of the weight. Continuing, we adopt an analysis parallel to the proof of
Theorem 1 in [21]. According to Eq. 12 in their work, if 7 is a measure on N(0,02I) and p is a measure on N'(0,4, 0%1)
with the dimension of 8 being k, it follows that:

1 04|13
KL(p||7) = 5[1 +kln(1+ %)]

Subsequently, Eq. 20 transforms into:
k
2

1n(1+

2 2

In = .
ko? +n 2

~ 111
Eenr(0,021) L (0a+€) < Eeno,021) L, (0ate) + 5[5 + 5

By Lemma 1 of [51], for any positive ¢, we have:
Pr(||e]|2 — ko? = 20V kt + 2to?) < e .
Thus, with probability 1 — 1/n (where ¢ = In n), it follows that:

2Inn\”
||s|§<02(21nn+k+2vklnn)<02k<1+ zn) <w?

Assuming, as in [21], that perturbations in discriminator weights have negligible impact on performance over an infinite
dataset, and integrating o back into Eq. 21, we deduce:

k

o 111 0,]|2 17 A2
ﬁ#(ed) < EENN(o,[;?I)ﬁ[Ln(OdJFE) + 5[5 + 5 In (1 + de!2) +In 3] + 7
0 A2
< max Ly (84+€)+ [7 71 <1+ H d”2(1+«/ 2Inn)/ ) )+ln ]+—.
llel<w? n 2

Taylor expansion in the weight gradient direction. Observe that the maximum of Eﬂn occurs when ¢ is chosen as € =

wVa,, 0,

Vo oz which is aligned with the gradient of L i, at 8q over fi,. We perform a second-order Taylor expansion of L fin
fn,04

around 6. Incorporating the remainder and the higher-order terms from the Taylor expansion into R( 164 H2 , l), we derive:

I wV; 043 1
L,(04) < Ly, (0d+ﬂ) JrR(H d||277)

IV i,.04ll2 w? 'n
> w? 643 1
~ Ly (84) +w||V; TR Vo, + R(C520 ).
#n( d) w” ﬂnyed”Z ZHVﬂn,QdH2 #n 04V f[in,04 2 '

Slmphfylng notations, we use Vg, and H g, for the gradient and Hessian matrix evaluated at 8, over real seen data fi,,, and
51m11ar ng and H o, for observed fake data 7,,. Considering the largest eigenvalue of Hg, as AX | implying v/ Hg,v <

M ||v||2, we bound the real data part of the generalization error of a GAN (Lemma 3.1) parameterized as network as follows:

Gd 1
sup [Eu[h] — B, [0]] <@l Vo, s + 5o —| V3, Ho, Vo, | + R('52 19all3 1)
REHum 2||V 0.3 n
164]13 1
w||V9d||2+ ‘)‘mdx|+R( 275)'
Similarly, the fake data part in the generalization error of GAN is:
S 16all3 1
}Lselgin |Ey:lf [h] - Eﬁn [h]‘ < wHVGd HQ + |/\max ( w2 = ) E)
By integrating the aforementioned two inequalities into the generahzatlon error as detailed in Lemma 3.1, we arrive at:
043 1
e < (1 Vo, + 190, I2) + (ML + DB +an(102 1y

n



B.3. Proof of Theorem 3.1

Theorem 3.1 (The issue of the centering step.) Consider Yy, Y, as i.i.d. samples from a symmetric distribution centered at pu,
where the presence of y implies 2 — vy is also included. After the centering step, §,, Y are i.i.d. samples from the centered
distribution. The expected cosine similarity between these samples is given by:

Ey,w. ] cos(y1,92)] > Eg o [cos(yy. §)] = 0.
Proof: Given that the distribution is symmetric and even, and gy # O, the mean of the L, normalized distribution

E[m] # 0. Denoting the mean of the Lo normalized sample as p, # 0, we can derive the expectation of the cosine
similarity as follows:

Y Y
Ey17y2 [COS(yhyQ)] = Ey17112 |:<||y11‘|2’ Hy22||2>] = Ez17z2 [<Z1, Zg>] = <:U’Z’ IJ’Z> = ||:U’Z||§ =0

In the centered distribution with fi,, = 0 and the symmetric probability, the presence of 4, implies the inclusion of —4j..
This leads us to the following derivation:
c ¢ '!31 '!32 1 '!Cl y1 y2
B o [cos(in fa)] =By o [(2—, 2] =SB, o [( Y+ )| =0
Y1y ¥ty fl2 [yl A ||y2||2 G2l (122
Comparing the above two Equations we obtain the final inequality.

B.4. Proof of Theorem 3.2

Theorem 3.2 (The issue of the scaling step.) The scaling step, defined in Eq. 7, can be expressed as matrix multiplication
Y = ?diag(l/a‘). The Lipschitz constant w.r.t. the 2-norm of the scaling step is:

1 1
Hdiag(>
o

le O min ’
where 0, = min, o, represents the minimum value in o.
Proof: Consider A = diag(A1, - , Ag), a diagonal matrix. We establish that:

d 1/2 d 1/2
| Al = max A = max (Zmﬁ) < max max|), \(fo) = max |\;| - max ||z]|> = max |-
lzll>= lzlla=1 \ & lzll>= Par] i lzll2=1 i
From this, it follows that:
. 1 1 1 1
Hdlag(—) = max|—| = — = .
g lllc c Oc ming o, O min

B.5. Proof of Theorem 3.3

Theorem 3.3 (CHAIN reduces the gradient norm of weights/latent features.) Denote the loss of discriminator with CHAIN as
L, and the resulting batch features as Y. Let §, € RP be c-th column of Y, Ay, Ay, € RE be the c-th column of gradient
oL oL max aS the largest eigenvalue of pre-layer features A.

. . oL
Y oy Denote Aw, as the c-th column of weight gradient 5
Then we have:

1— c min 2 2 1_ min ~
|80l < g, (UL D) 2L D 1

1Awe[I3 < Al Ay, 3

Proof:  Aligning with Theorem 4.1 from [80] we derive the gradients of the latent feature and the weight. For convenience,
we define Y as the resulted interpolated batch features from Eq. 14. By applying the expectation over the M, replacing

it with p, and using the chain rule of the backward propagation, we determine the expected gradient for each Aygb) within
Ay, € R as follows:
B

. min . ~ 1 . ~(i
Ay = AgP (1 —p) + p% (A5 =g - = A - )

C C C

. 1- p)'(/}c + PYmin Wimin «(p) 1 & () ~i
— A (b)(( >_ )= 37 Ay - .
Ye Ve p Ve Ye B ~ Ye' " Ye



The squared gradient norm for Ay, is calculated as follows:
o (L= P)e + P¥min\? 2(1 = P)pUmin | PV
|Ayl3 = 185, 3( mn)T = (A9l T,)?

n By. | Bu?
1- c min 2 2(1 — min ~
HA ||2<( p)qf/}6+ pw ) _ ( B[[wa (A T )2

Using the chain rule, we derive the gradient w.r.t. the weight as follows:

A B (b)
oL oL 0Oye
-3 - syl
oWi. = (3y(b) Wi;e ¢
This leads to:
Aw, = AT Ay,.

Considering Amax as the largest eigenvalues of A, which suggests v7 Av < A\pa || v]|3, we obtain the following result:

|Aw[3 = AyT AAT Ay, < A2, ]|Ay. 3.

C. The decorrelation effect of the stochastic design M

To analyze why the stochastic design M outperforms the deterministic p, we examine the correlation coefficient between
two random variables Y;, Y; from two different channels.

Theorem C.1 LetY;, Y; be random variables from the i-th and j-th channels, respectively, where i # j. Define 171 = %wmm
as the normalized random variable from channel i after root mean square normalization. Considering an adaptive p under
our control, we distinguish between the deterministic version of CHAIN, i.e. CHAINpy,,. and our stochastic CHAIN as:

Deterministic (CHAINpy, ): Y! = (1 — p)Y;i + pY;, (22)
Stochastic (CHAIN):  Y; = (1 —m)Y; + mY;, where m ~ B(p). (23)

Assuming E[Y;] = E[Y;] = 0 achievable through our zero mean regularization in Eq. 12, and letting o;, o}, &; represent the
standard deviations of Y;, Y/, 'Y, respectively, we define and relate the correlation coejj‘ictents of the two versions as follows:

Cov(Y/!,Y!) . Cov(Y;,Y,
Q;’j # = Qi = %- (24)
177 V)

Theorem C.1 reveals that the stochastic CHAIN has a lower correlation coefficient among features from different channels
than the deterministic CHAINpy, , indicating that the stochastic design M exhibits a decorrelation effect.
Proof: Given E[Y;] = 0, it follows that E[Y/] = E[Y;] = 0. Using the covariance definition Cov(Z1, Zs) = E[(Z; —
tz,)(Za — pz,)] for any two random variables Z;, Z,, we get:
Cov(Y],Y]) = E[Y]Y/], Cou(Y;,Y;) = E[Y;Y].

PR

Since m is stochastic noise independent of Y;, Y;, and m ~ B(p) implying in E[m] = p, we conclude:

E[Y]Y]] = E[V}Y;] — Cov(Y;, Y]) = Cov(Y;,Y;). (25)
Next, we explore the relationship between the variances o/ and 7
. 2 .
o = B[] - B[/} =E|((1-p+ pli‘f‘l“)n) |-0=(1-p+ pli“f‘“)zE[EQ], (26)
. . A~ 2
= E[Y?] - E[Yi]* = (1 - p)E[Y?] + pE[Y?] 0= (1 —p+p el JE[Y?]. 27)
Comparing Eq. 26 and 27, and considering p € [0, 1], we establish the following relationship:
( : Pnin ) _ (1~ p) + p(1 — ) L0 — 2p(1 — p) U
l—p+p m‘")—(l—p+ﬂ) =p(1—p)+p(l —p)—22 —2p(1 —p)——
V7 Vi V7 Yi
wmin 2
= - -2 >0.

Therefore, o} < 6, and similarly 0' < 0. Coupled with Eq. 25, we derive the following conclusion:

COvoc’, Y))=Cou(Y,,Y;) ,  Coo(Y(.Y]) . Cou(V;Y;)
/< O'j v 010. = tu .

j 003



Experimental validation. Decorrelation diversifies feature patterns, promoting a higher feature rank. This is demonstrated
in Figure 8, where CHAIN, employing the stochastic M over the deterministic value p used by CHAINp,, , achieves a higher
effective rank (eRank) [78]. This supports Theorem C.1, underscoring the beneficial effect of stochastic design in M for
decorrelation, and validates the design choice of CHAIN.

eRank eRank

130 r' 1301,

1001, 100 {
704 —— CHAIN 701 —— CHAIN
401 | | CI-‘IAINDtm“ 401 | | CI-‘IAINDtm“

0 50 100 150 195 0 50 100 150 195
iterations (x 1000) iterations (x 1000)

(a) 10% CIFAR-10 with OmniGAN (d = 256). (b) 10% CIFAR-100 with BigGAN (d = 256).

Figure 8. Effective rank [78] of all pre-activation features in the discriminator for CHAIN and CHAINpm. on (a) 10% CIFAR-10 using
OmniGAN (d=256) and (b) 10% CIFAR-100 with BigGAN (d = 256).

D. Implementation Details

In this section, we overcome the mini-batch size limitation of CHAINp,n, Which relies solely on current batch data statistics,
by developing it to CHAIN, which ultilizes cumulative running forward/backward statistics across training. We also provide
detailed implementation for Network and hyper-parameter choices, and methods applied in our ablation studies.

D.1. Implementation of CHAIN (running cumulative forward/backward statistics across training)

Inspired by [30, 85, 107], we enhance CHAIN to use running cumulative forward/backward statistics. We simplify our
analysis by focusing on the Root Mean Square Normalization (RMSNorm), considering features of a single channel and
omitting the channel index. Additionally, we exclude the constant ¢, used to avoid division by zero, as it is unnecessary for
this analysis. This refinement enables the representation of the forward process for the root mean square normalization as
follows:

B
1
2 _ 4 (b))2
v =5 2 W) (28)
b=1
Y =12, (29)
(b)
g == (30)
7 =5 . (31)
Leveraging the chain rule, the gradient calculation can be expressed as follows:
oL oL
EHi0) = 50 * Ymin, (32)
oL 11 0C
. P ON
oy® [agj(b) \Ij]’ 53
B
1 oL -
where ¥ = 7@, (34)

JE— viz . y
B4 oy
Examining the forward and backward processes reveals that Eq. 28 and 34 are dependent on the batch size. To eliminate this
dependency, we propose updating the cumulative statistics for these terms as follows:

V21 = 0% ag+ 97 (1 - ay), (35)
U1 =V ag+ ¥ - (1 —ayg), (36)
where g, a decay hyperpamameter, is typically set as 0.9. We replace 12, U with their cumulative versions )2, U. This

forms an effective algorithm for the normalization part of CHAIN, using cumulative forward/backward statistics, as shown
in Alg. 1



Algorithm 1: PyTorch-style pseudo code for Root Mean Square Normalization (RMSNorm) in CHAIN.

# Y:BxdxHxW feature, rl;nning,psi,sqr:lﬁ, decay:aq, eps:a small constant
def RMSNorm_forward(Y, running.psi_sqr, decay=0.9, eps=le-5):
psi_sgr=Y.square ().mean (axis=[0,2,3], keepdim=True) # Eqg.28
running._psi_sgr.data.mul_(decay) .add_(psi_-sqr, alpha=l-decay) # Eg.35
running_psi=(running psi_sqgr + eps).sqgrt() # Eg.29
psimin = running_psi.min().detach()
Ycheck = Y / runningpsi # Eqg.30
return Ycheck x psimin # Eg.31
::f, runnirlg,psi:;, 1‘1111r1111<J,Psi,q':ad:@, psimin:Ynin decay:ag
def RMSNorm_backward(grad_-Yhat, Ycheck, running_psi, running Psi_grad, psimin, decay=0.9):
grad_-Ycheck = grad.-Yhat * psimin # Eqg.32
Psi_grad = (Ycheck x grad.Ycheck) .mean (axis=[0,2,3], keepdim=True) # Eqg.34
running Psi grad.data.mul_(decay) .add_(Psi_grad, alpha=l-decay) # Eg.36
return (grad.-Ycheck - Ycheck x running.Psi._grad) / running.psi # Eq.33

# grad_-Yhat :BxdxHxW

D.2. Network and hyper-parameters

CIFAR-10/100. We utilize OmniGAN (d =256 and 1024) and BigGAN (d = 256) with a batch size of 32. Following [120],
OmniGAN and BigGAN are trained for 1K epochs on full data and 5K epochs on 10%/20% data setting. CHAIN is inte-
grated into the discriminator, after convolutional layers ¢ € {C, Co, Cs} at all blocks [ € {1, 2, 3,4}, with hyperparameters
setas A, = 0.001,7 = 0.5, A = 20.

ImageNet. We build CHAIN upon BigGAN with 512 batch size. We adopt learning rate of le-4 for generator and 2e-
4 for discriminator. CHAIN is applied after convolutional layers ¢ € {C,Cs, Cgs} at all blocks I € {1,2,3,4,5}, with
hyperparameters A, =0.001,7=0.5, A =20.

5 Low-shot images (256 x 256). We build CHAIN upon StyleGAN2 with a batch size of 64, training until the discriminator
has seen 25M real images. CHAIN is applied after convolutions ¢ € {C7, Ca} at blocks | € {3,4,5,6}. We set A, =
0.0001, 7=0.9, A= 0.05.

7 Few-shot images (1024 x 1024) We replace the large discriminator in FastGAN with the one from BigGAN while re-
moving the smaller discriminator. This modification yields FastGAN-Dy;,, with the discriminator network architecture
illustrated in Figure 9. We employ a batch size of 8 and run for 100K iterations. We equip the discriminator with CHAIN
after convolutional layers c € {C4, Cs, Cs} at blocks [ € {1,2,3,4,5}. We set A, = 0.001,7 = 0.5, A = 20.

Discriminator of FastGAN—D,,; ! Skip-Layer
big i ResBlock down ! ResBlock none i Excitaliion )];lock
Convyyy, s:2, p:1 v 2 -D loss H H
LReLU « I/' | xeR02#3 - e X
Convyyy, 5:2, p:1 \ "‘ K 1 T high Alow
256°x4 f—— 4 head | | — :
4 H H H
8d T LReLU R i AvgPool**
By AvgPool™ i Convs, ¢ ConVyxs
1282x¢ | g2x8d 4 P orreLy | COMma | CoVae | g
x X i AvgPool : LReLU
Ty Convsys VE00%xz Cone\:/ i Conv; yq
B, Bg i AvgPooly,, 3x3 Sigmoid
g | T ?4—
64°xd v v v v

By — SEB;, —» B, —» SEB, —» B; —» SEBj3 i
By, ...,Bs i Bs :SEB,,SEB,,SEB3
32%x2d 162x4d 82x8d :

Figure 9. The discriminator of FastGAN—-Dy,;,. d: The base feature dimension. Convsx4: A convolutional layer with a 4 x 4 kernel size.
LReLU: Leaky ReLU activation with a slope 0.2. AvgPoolax2: Average pooling downscales by a factor of 2. AvgPool***: Adaptive
average pooling with a 4 x 4 output spatial size. Xign: The higher resolution feature map. Xow: The lower resolution feature map. For
more details on skip-layer excitation block, please refer to [57] and [28].



D.3. Implementation for AGP;,,,c and AGP,ion

In Table 6, we provide a comparison of CHAIN with two gradient penalization methods: AGPjppy and AGPyeign. For
AGPjypui, we implement || %—g ||2 and || 2—;: |3 where f represents the feature extractor of discriminator D. Regarding AGPycigh,
we also implement || gTE; |2 and || a&de ||3. We search the penalization strength A\gp within the range [1e-10, 20] for each dataset
and variant. For 10% CIFAR-10 w/ OmniGAN (d = 256), the optimal settings are: AGPjp, with H%H% and \gp=>5, and
AGPyigh; With % |3 and Agp set to 1e-6. For 10% CIFAR-100 w/ BigGAN (d = 256), the best configurations are: AGPjnpuc

with || ££(13 and Agp=5, and AGPycign with || 25 |13 and Ap set to 2e-6.

E. Additional Experiments
E.1. Comparison with leading methods

Table 7 compares CHAIN with Lottery-GAN [12], LCSA [70], AugSelf-GAN [27], and NICE [68], showing the superiority
of CHAIN. Unlike AugSelf-GAN, LotteryGAN, and NICE, which need extra forward or backward passes for augmenta-
tion, and LCSA, which demands more computation and weights for dictionary learning, CHAIN is more efficient, needing
negligible computation for normalization.

Table 7. Comparing CIFAR-10/100 results with varying data percentages, using CHAIN vs. other leading methods, on BigGAN (d = 256).

CIFAR-10 CIFAR-100

Method 10% data 20% data 100% data 10% data 20% data 100% data

ISt tFID| vFID| | IS? tFID| vFID| | IS? tFID| vFID|| ISt tFID| vFID|| ISt tFID| vFID| | ISt tFID| vFID|
LeCam+DA 8.81 12.64 1642 |9.01 8.53 1247 (945 432 840 | 9.17 2275 27.14 [10.12 1596 2042 |11.25 645 11.26
+Lottery-GAN [8.77 11.47 1548 {899 7091 11.83|9.39 421 825 | 9.05 20.63 2531|955 15.18 20.01 [11.28 6.32 11.10

+LCSA 8.96 10.05 13.88 |9.04 695 1095|947 375 7.83 |10.28 1824 23.12 |10.67 10.16 15.00 |11.17 5.85 10.64
+NICE 899 9.86 13.81|9.12 692 10.89 |9.52 372 7.81 | 935 1495 19.60 |10.54 10.02 1493 |11.28 5.72 10.40
+AugSelf-GAN [ 9.04 898 1294 [9.13 642 10.54 |9.48 3.68 7.73 | 9.89 14.02 18.84 |1043 11.32 16.02 |11.25 543 10.14
+CHAIN 896 8.54 1251 |{9.27 592 990 (952 3.51 747 |10.11 12.69 17.49 |10.62 9.02 13.75 |11.37 5.26 9.85

E.2. Gradient analysis on 10% CIFAR-100 using BigGAN (d =256)

In this section, we present experiments conducted on 10% CIFAR-100 using BigGAN (d = 256). Figure 10 provides addi-
tional validation of Theorem 3.1, illustrating how the centering step leads to feature differences and an associated increase in
gradients. Meanwhile, Figure 11 confirms Theorem 3.2, highlighting that the scaling step causes gradient explosions during
GAN training and results in rank deficiency.

— BigGAN +0C +A0C —— BigGAN +0C +A0C
>
£ 0.61 g 110+
Rl NS 5
£ 0.4 Z 801 /
@ 5 ‘
£0.29 S 501
0.0 : : , 4 204 : : : :
0 50 100 150 195 0 50 100 150 195
iterations (x 1000) iterations (x 1000)
(a) Mean cosine similarity. (b) Gradient norm.

Figure 10. (a) Mean cosine similarity of discriminator pre-activation features, and (b) gradient norm of the feature extractor w.r.t. the input
are evaluated for BigGAN, BigGAN+0C (using the centering step in Eq. 6), and BigGAN+AOC (adaptive interpolation between centered
and uncentered features). Evaluation conducted on 10% CIFAR-100 data with BigGAN (d = 256).

E.3. The rank efficiency of CHAIN over AGP,.ion

Both CHAIN and AGPyign can reduce the discriminator weight gradient to improve generalization, but CHAIN gains a
crucial advantage from normalization. The normalization step in CHAIN balances features among channels and orthogo-
nalizes features [16, 17]. Figure 12 clearly illustrates that CHAIN achieves a higher effective rank compared to AGPyqight.
Discriminators with higher rank efficiency can fully utilize their width (balanced channels) and depth, resulting in enhanced
expressivity and superior representation capability.



+CHAIN_¢

BigGAN +CHAIN +CHAIN, o¢

I oD eRank

ox
10.0 120
7.5 90~

5.0 ON_ |\

2.5 301
0.0+ ; | | | 04 : | | |
0 50 100 150 195 0 50 100 150 195
iterations (x 1000) iterations (x 1000)
(a) Gradient norm. (b) Effective rank.

Figure 11. (a) Gradient norm of discriminator output w.r.t. input during training, and (b) effective rank [78] of the pre-activation features
in discriminator, are evaluated on 10% CIFAR-100 data with BigGAN (d = 256). CHAIN o¢ indicates CHAIN with the centering step
included, while CHAIN_ 7. represents CHAIN without the Lipschitzness constraint.

eRank] eRank]

1301 1301

100 1 100 {\(
701 —— CHAIN 70 //_\ —— CHAIN
40 E— AGpweight 40 E— AGPweight

0 50 100 150 195 0 50 100 150 195
iterations (x 1000) iterations (x 1000)

(a) 10% CIFAR-10 with OmniGAN (d = 256). (b) 10% CIFAR-100 with BigGAN (d = 256.)

Figure 12. Effective Rank [78] for CHAIN and AGPyeign: on (a) 10% CIFAR-10 using OmniGAN (d = 256) and (b) 10% CIFAR-100 with
BigGAN (d =256).

E.4. The stability of feature norm of CHAIN during training

Our work examines modern discriminators with residual blocks, where the main and skip branch features are added at the
end of each block (see Figure 1). Despite the scaling factor < 1 induced by the Lipschitz constraint (as in Eq. 13), feature
norms remain stable across layers thanks to the skip connections. Figure 13 presents feature norms at the end of each block,
averaged over early (0 — 5k iteration) and later training stages (> 5k iteration). Initially, both methods exhibit similar feature
norms, but as training processes, baseline norms increase while CHAIN maintains stable norms across layers due to the
adaptive interpolation between normalized and unnormalized features (as in Eq. 14).

glz‘ —0— OmniGAN 121 —g— OmniGAN
s} —0— +CHAIN —0— +CHAIN
S 81 81
g
£ 41 41
i S - m—1 - D SR SR
0 . . . — : . . ;
1 2 3 4 1 2 3 4
Block Block
(a) < bk iteration. (b) > 5k iteration.

Figure 13. Feature norms during training w/ vs. w/o CHAIN, are evaluated on 10% CIFAR-10 using OmniGAN (d = 256).

F. Training overhead

Table 8 presents the number of parameters, multiply-accumulate (MACs) operations (for both generator and discriminator),
the number of GPUs, and the cost in time (seconds per 1000 images, secs/kimg). Notably, CHAIN introduces only a small
fraction of the time cost, ranging from 6.3% to 9.6% across these datasets.



Table 8. Number of parameters, MACs and secs/kimg for models with vs. without the CHAIN. Experiments were performed on NVIDA
A100 GPUs.

Baseline +CHAIN
D Resoluti Backl P
ataset esolution ackbone d GPUs #Par. MACs sec/kimg #Par. MACs sec/kimg

BigGAN 8.512M 2.788G 0.79 8.512M 2.791G 0.84

CIFAR-10 3232 OmniGAN 236 ! 8.512M 2.788G 0.80 8.512M 2.790G 0.85
BigGAN 8.811M 2.788G 0.80 8.811M 2.791G 0.85

CIFAR-100 3232 OmniGAN 236 ! 8.811M 2.788G 0.81 8.811M 2.791G 0.85
ImageNet 64 %64 BigGAN 384 2 115.69M  18.84G 1.79 115.69M  19.12G 1.91

5 Low-shot datasets 256 x 256 StyleGAN2 512 2 48.77TM  44.146G 5.66 48.77TM  44.151G 6.06
7 Few-shot datasets 1024 x 1024  FastGAN-Dy;, 64 1 42.11M 23.98G 32.79 42.11M 24.00G 35.94

G. Generated Images

Figures 14, 15, 16, 17 and 18 provide images generated on CIFAR-10, CIFAR-100, ImageNet, the 5 low-shot image and
the 7 few-shot image datasets, with or without CHAIN. The comparison highlights the enhancement in image quality and
diversity achieved with the application of CHAIN.

Figure 14. Generated images using (a) ADA and (b) ADA+CHAIN on 10% CIFAR-10 with OmniGAN (d = 1024). Note that ADA leaks
the rotation augmentation artifacts (row 1, 2 and 10).



(b) DA+CHAIN

Figure 15. Generated images using (a) DA and (b) DA+CHAIN on 10% CIFAR-100 with BigGAN (d = 256). We present the last 20
of 100 classes. CHAIN clearly enhances the diversity and quality of the generated images. Notably, DA leaks the cutout augmentation
artifacts (row 1, 2, 4 and 18).



2.5% ImageNet (64 x 64)

10% ImageNet (64 x 64)

(a) BigGAN+ADA (b) BigGAN+ADA+CHAIN

Figure 16. Visual comparison between ADA vs. ADA+CHAIN on 2.5% and 10% ImageNet(64 x 64) data. ADA struggles to capture the
structure and diversity of the data, while CHAIN clear improves the diversity and visual quality of generated images.



AnimalFace Cat Panda Grumpy Cat Obama

AnimalFace Dog

“ M

(a) StyleGAN2+ADA

(b) Styl

Figure 17. Visual comparison between ADA and ADA+CHAIN on 100-shot and AnimalFace datasets (256 x 256). The integration of
CHAIN clearly improves the image quality.



MessidorSet] BreCaHAD Anime Face Skulls Shells

Pokemon

ArtPainting

(a) Real images (b) FastGAN— Dy, +CHAIN.

Figure 18. Qualitative results of FastGAN—-Dy;,+CHAIN on 7 few-shot image dataset (1024 x 1024). (a) shows real training images and
the (b) presents images generated by FastGAN—-Dy;;+CHAIN. CHAIN is capable of generating photo-realistic images with fine details
even from a limited number of training samples.



