
⃝⃝CHAIN: Enhancing Generalization in Data-Efficient GANs via lipsCHitz
continuity constrAIned Normalization (Supplementary Material)

Yao Ni: Piotr Koniusz˚,§,:

:The Australian National University §Data61 CSIRO
:firstname.lastname@anu.edu.au

The supplementary material contains notations (§A), theoretical proofs (§B), an explanation for stochasticM design (§C),
implementation guidelines (§D), extra experimental results (§E), training overhead (§F), and examples of generated images
(§G).

A. Notations
Below, we explain the notations used in this work.
Scalars: Represented by lowercase letters (e.g., m, n, p).
Vectors: Bold lowercase letters (e.g., x, z, µ).
Matrices: Bold uppercase letters (e.g.,W ,M ,H).
Functions: Letters followed by brackets (e.g., ϕp¨q, hp¨q, diagp¨q).
Function sets: Calligraphic uppercase letters are used (e.g., H, G, F). But note B specifically denotes the Bernoulli distri-
bution.
Probability measures: Denoted by letters µ, ν, π, ρ̂ and pz .
Expectation: Er¨s represents the average or expected value of a random variable.

B. Proofs
We start with a lemma on the Pac-Bayesian bound, followed by in-depth proofs for the theories outlined in the main paper.

Lemma B.1 (A variant of the PAC-Bayesian bound adapted from Theorem 4.1 in [2] and from [10].) Let D be a distribution
over X . Denote the prior and posterior probability measure on a hypothesis set F as πp¨q, ρ̂p¨q P M1

`, where M1
` (positive

and normalized to 1) is the set of all probability measures on F . Denote ϕ : F ˆ X Ñ R and LϕD :“ EDrϕs as the loss. For
α ą 0 and δ P p0, 1s, with probability at least 1 ´ δ over the choice of x „ Dn (a subset from D with size of n), we have:

Ef„ρ̂LϕDpfq ď Ef„ρ̂
pLϕDnpfq `

1

α

”

KLpρ̂∥πq ` ln
1

δ
` Ωpα, nq

ı

where Ωpα, nq “ lnEf„πEDn exp
␣

α
`

LϕDpfq ´ pLϕDnpfq
˘(

. (17)

Proof: The Donsker-Varadhan change of measure states that for any measurable function φ :F ÑR and @ρ̂ on F , we have:
Ef„ρ̂φpfq ď KLpρ̂∥πq ` lnEf„πe

φpfq.

Denoting φpfq :“ α
`

LϕDpfq ´ pLϕDnpfq
˘

, the above inequality yields:

α
`

Ef„ρ̂LϕDpfq ´ Ef„ρ̂
pLϕDnpfq

˘

“ Ef„ρ̂α
`

LϕDpfq ´ pLϕDnpfq
˘

ď KLpρ̂∥πq ` lnEf„πe
αpLϕ

Dpfq´ pLϕ
Dn pfqq.

Applying Markov’s inequality to the random variable ξπpXq :“ Ef„πe
αpLϕ

Dpfq´ pLϕ
Dn pfqq, we obtain:

Pr
`

ξπ ď
1

δ
Erξπs

˘

ě 1 ´ δ.

Thus, with probability at least 1 ´ δ over the choice of x „ Dn, we obtain:

Ef„ρ̂LϕDpfq ď Ef„ρ̂
pLϕDnpfq `

1

α

”

KLpρ̂∥πq ` ln
1

δ
` lnEf„πEDneαpLϕ

Dpfq´ pLϕ
Dn pfqq

ı

.

B.1. Proof of Lemma 3.1

Lemma 3.1 (Partial results of Theorem 1 in [32].) Assume the discriminator set H is even, i.e., h P H implies ´h P H and
∥h∥8ď ∆. Let µ̂n and ν̂n be empirical measures of µ and νn with size n. Denote ν˚

n “ infνPG dHpµ̂n, νq. The generalization
error of GAN, defined as ϵgan :“ dHpµ, νnq ´ infνPG dHpµ, νq, is bounded as:

ϵgan ď 2
`

sup
hPH

ˇ

ˇEµrhs ´ Eµ̂n
rhs

ˇ

ˇ ` sup
hPH

ˇ

ˇEν˚
n

rhs ´ Eν̂nrhs
ˇ

ˇ

˘

“ 2dHpµ, µ̂nq ` 2dHpν˚
n , ν̂nq.

Proof:
ϵgan :“dHpµ, νnq ´ inf

νPG
dHpµ, νq “ dHpµ, νnq ´ dHpµ̂n, νnq ` dHpµ̂n, νnq ´ inf

νPG
dHpµ, νq

“ dHpµ, νnq ´ dHpµ̂n, νnq
loooooooooooooomoooooooooooooon

1

` inf
vPG

dHpµ̂n, νq ´ inf
vPG

dHpµ, νq
looooooooooooooooomooooooooooooooooon

2

` dHpµ̂n, νnq ´ inf
vPG

dHpµ̂n, νq
loooooooooooooooomoooooooooooooooon

3

.

The three components in the above equation are upper-bounded as follows:
Upper bound 1 :

dHpµ, νnq ´ dHpµ̂n, νnq “ sup
hPH

|Eµrhs ´ Eνnrhs| ´ sup
hPH

|Eµ̂n
rhs ´ Eνnrhs|

ď sup
hPH

ˇ

ˇEµrhs ´ Eνnrhs ´ Eµ̂n
rhs ` Eνnrhs

ˇ

ˇ “ sup
hPH

ˇ

ˇEµrhs ´ Eµ̂n
rhs

ˇ

ˇ.

Upper bound 2 : Denote ν˚ “ infνPG dHpµ, νq. Then similar to derivation for 1 , we obtain:
inf
vPG

dHpµ̂n, νq ´ inf
vPG

dHpµ, νq “ inf
vPG

dHpµ̂n, νq ´ dHpµ, ν˚q

ďdHpµ̂n, νq ´ dHpµ, ν˚q ď sup
hPH

ˇ

ˇEµrhs ´ Eµ̂nrhs
ˇ

ˇ.

Upper bound 3 : Here, we consider a practical scenario where the discriminator only has access to finite fake data during
optimization. Recall that we denote ν˚

n :“ infνPG dHpµ̂n, νq, thus dHpµ̂n, νnq ě dHpµ̂n, ν
˚
nq, leading to the inequality that:

dHpµ̂n, νnq ´ inf
vPG

dHpµ̂n, νq “ dHpµ̂n, νnq ´ dHpµ̂n, ν
˚
nq

“
`

dHpµ̂n, νnq ´ dHpµ̂n, ν̂nq
˘

`
`

dHpµ̂n, ν̂nq ´ dHpµ̂n, ν
˚
nq
˘

ď sup
hPH

ˇ

ˇEνnrhs ´ Eν̂nrhs
ˇ

ˇ ` sup
hPH

ˇ

ˇEν˚
n

rhs ´ Eν̂nrhs
ˇ

ˇ ď 2 sup
hPH

ˇ

ˇEν˚
n

rhs ´ Eν̂nrhs
ˇ

ˇ.

Integrating the three bounds we achieve the final result.

B.2. Proof of Proposition 3.1

Proposition 3.1 Utilizing notations from Lemma 3.1, we define ϵnn
gan as the generalization error of GAN parameterized as

neural network classes. Let ∇θd
and Hθd

represent the gradient and Hessian matrix of discriminator h evaluated at θd
over real training data µ̂n, and r∇θd

and ĂHθd
over observed fake data ν̂n. Denoting λHmax and λĂH

max as the largest eigenvalues
ofHθd

and ĂHθd
, respectively, and for any ω ą 0, the generalization error is bounded as:

ϵnn
gan ď2ω

`

∥∇θd
∥2 ` ∥ r∇θd

∥2
˘

` 4R

ˆ∥θd∥22
ω2

,
1

n

˙

` ω2
`

|λHmax| ` |λ
ĂH
max|

˘

,

where R
´

∥θd∥2
2

ω2 , 1
n

¯

, a term related to discriminator weights norm, is inversely related to the data size n.

Proof: We start by deriving a PAC-Bayesian bound for GAN generalization error on real data. This is followed by an
approach similar to Theorem 1 in [21], establishing a connection between this error and the discriminator’s gradient direction.
Finally, a Taylor expansion of the discriminator in the gradient direction is applied, paralleled by a similar formulation for
fake data, culminating in our final results.

PAC-Bayesian bound for GAN. Denoting Lµ :“ Eµrhs and the parameter of the discriminator as θd P Θd, and applying
Lemma B.1, we obtain:

Eθd„ρ̂Lµpθdq ď Eθd„ρ̂
pLµ̂n

pθdq `
1

α

”

KLpρ̂∥πq ` ln
1

δ
` Ωpα, nq

ı

where Ωpα, nq “ lnEθd„πEµ̂n exp
␣

α
`

Lµpθdq ´ pLµ̂npθdq
˘(

. (18)
We then derive the upper bound for Ωpα, nq on the discriminator. Let ℓi represent a realization of the random variable
Lµ ´ hpxi;θdq. Given that h P r´∆,∆s stated in Lemma 3.1, changing variable xi to another independent copy x1

i, alters

ℓi by at most 2∆
n . Utilizing Hoeffding’s lemma, we obtain:

Eµ̂ne
αpLµpθdq´ pLµ̂n pθdqq “ Eµ̂n

exp
!α

n

n
ÿ

i“1

ℓi

)

“

n
ź

i“1

E exp
!α

n
ℓi

)

ď

n
ź

i“1

exp
!α2p2∆q2

8n2

)

“ exp
!α2∆2

2n

)

. (19)

By inserting Eq. 19 into Eq. 18, and setting α “ n, we arrive at:

Eθd„ρ̂Lµpθdq ď Eθd„ρ̂
pLµ̂n

pθdq `
1

n

”

KLpρ̂∥πq ` ln
1

δ

ı

`
∆2

2
. (20)

Generalization error and the gradient direction of the weight. Continuing, we adopt an analysis parallel to the proof of
Theorem 1 in [21]. According to Eq. 12 in their work, if π is a measure on N p0, σ2

πIq and ρ̂ is a measure on N pθd, σ
2Iq

with the dimension of θ being k, it follows that:

KLpρ̂∥πq “
1

2

”

1 ` k ln
`

1 `
∥θd∥22
kσ2

˘

ı

.

Subsequently, Eq. 20 transforms into:

Eε„N p0,σ2IqLµpθd`εq ď Eε„N p0,σ2Iq
pLµ̂n

pθd`εq `
1

n

”1

2
`
k

2
ln
`

1 `
∥θd∥22
kσ2

˘

` ln
1

δ

ı

`
∆2

2
. (21)

By Lemma 1 of [51], for any positive t, we have:
Prp∥ε∥22 ´ kσ2 ě 2σ2

?
kt` 2tσ2q ď e´t.

Thus, with probability 1 ´ 1{n (where t “ lnn), it follows that:

∥ε∥22 ď σ2
`

2 lnn` k ` 2
?
k lnn

˘

ď σ2k

ˆ

1 `

c

2 lnn

k

˙2

ď ω2.

Assuming, as in [21], that perturbations in discriminator weights have negligible impact on performance over an infinite
dataset, and integrating σ back into Eq. 21, we deduce:

Lµpθdq ď Eε„N p0,σ2Iq
pLµ̂n

pθd`εq `
1

n

”1

2
`
k

2
ln
`

1 `
∥θd∥22
kσ2

˘

` ln
1

δ

ı

`
∆2

2

ď max
∥ε∥2

2ďω2

pLµ̂npθd`εq `
1

n

”1

2
`
k

2
ln

ˆ

1 `
∥θd∥22
ω2

´

1 `
a

p2 lnnq{k
¯2
˙

` ln
1

δ

ı

`
∆2

2
.

Taylor expansion in the weight gradient direction. Observe that the maximum of pLµ̂n
occurs when ε is chosen as ε“

ω∇µ̂n,θd

∥∇µ̂n,θd
∥2

, which is aligned with the gradient of pLµ̂n
at θd over µ̂n. We perform a second-order Taylor expansion of pLµ̂n

around θd. Incorporating the remainder and the higher-order terms from the Taylor expansion into R
´

∥θd∥2
2

ω2 , 1
n

¯

, we derive:

Lµpθdq ď pLµ̂n

´

θd `
ω∇µ̂n,θd

∥∇µ̂n,θd
∥2

¯

`R
´∥θd∥22

ω2
,
1

n

¯

« pLµ̂npθdq ` ω∥∇µ̂n,θd
∥2 `

ω2

2∥∇µ̂n,θd
∥22

∇T
µ̂n,θd

H µ̂n,θd
∇µ̂n,θd

`R
´∥θd∥22

ω2
,
1

n

¯

.

Simplifying notations, we use ∇θd
andHθd

for the gradient and Hessian matrix evaluated at θd over real seen data µ̂n, and
similar r∇θd

and ĂHθd
for observed fake data ν̂n. Considering the largest eigenvalue of Hθd

as λHmax, implying vTHθd
v ď

λHmax∥v∥22, we bound the real data part of the generalization error of a GAN (Lemma 3.1) parameterized as network as follows:

sup
hPHnn

ˇ

ˇEµrhs ´ Eµ̂n
rhs

ˇ

ˇ ď ω∥∇θd
∥2 `

ω2

2∥∇θd
∥22

ˇ

ˇ

ˇ
∇T

θd
Hθd

∇θd

ˇ

ˇ

ˇ
`R

`∥θd∥22
ω2

,
1

n

˘

ď ω∥∇θd
∥2 `

ω2

2
|λHmax| `R

`∥θd∥22
ω2

,
1

n

˘

.

Similarly, the fake data part in the generalization error of GAN is:

sup
hPHnn

ˇ

ˇEν˚
n

rhs ´ Eν̂nrhs
ˇ

ˇ ď ω∥ r∇θd
∥2 `

ω2

2
|λ

ĂH
max| `R

`∥θd∥22
ω2

,
1

n

˘

.

By integrating the aforementioned two inequalities into the generalization error as detailed in Lemma 3.1, we arrive at:

ϵnn
gan ď 2ω

`

∥∇θd
∥2 ` ∥ r∇θd

∥2
˘

` ω2p|λHmax| ` |λ
ĂH
max|q ` 4R

`∥θd∥22
ω2

,
1

n

˘

.

B.3. Proof of Theorem 3.1

Theorem 3.1 (The issue of the centering step.) Consider y1,y2 as i.i.d. samples from a symmetric distribution centered at µ,
where the presence of y implies 2µ´ y is also included. After the centering step, cy1,

c
y2 are i.i.d. samples from the centered

distribution. The expected cosine similarity between these samples is given by:
Ey1,y2

“

cospy1,y2qs ě Ec
y1,

c
y2

“

cosp
c
y1,

c
y2q

‰

“ 0.

Proof: Given that the distribution is symmetric and even, and µY ‰ 0, the mean of the L2 normalized distribution
E
“

y
∥y∥2

‰

‰ 0. Denoting the mean of the L2 normalized sample as µZ ‰ 0, we can derive the expectation of the cosine
similarity as follows:

Ey1,y2

“

cospy1,y2qs “ Ey1,y2

”

x
y1

∥y1∥2
,
y2

∥y2∥2
y

ı

“ Ez1,z2
rxz1, z2ys “ xµZ ,µZy “ ∥µZ∥22 ě 0.

In the centered distribution with c
µY “ 0 and the symmetric probability, the presence of cy2 implies the inclusion of ´

c
y2.

This leads us to the following derivation:

Ec
y1,

c
y2

“

cosp
c
y1,

c
y2q

‰

“ Ec
y1,

c
y2

”

x

c
y1

∥ cy1∥2
,

c
y2

∥ cy2∥2
y

ı

“
1

2
Ec
y1,

c
y2

”

x

c
y1

∥ cy1∥2
,

c
y2

∥ cy2∥2
y ` x

c
y1

∥ cy1∥2
,

´
c
y2

∥ cy2∥2
y

ı

“ 0

Comparing the above two Equations we obtain the final inequality.

B.4. Proof of Theorem 3.2

Theorem 3.2 (The issue of the scaling step.) The scaling step, defined in Eq. 7, can be expressed as matrix multiplication
s
Y “

c
Y diagp1{σq. The Lipschitz constant w.r.t. the 2-norm of the scaling step is:∥∥∥diag

ˆ

1

σ

˙∥∥∥
lc

“
1

σmin
,

where σmin “ minc σc represents the minimum value in σ.
Proof: Consider Λ “ diagpλ1, ¨ ¨ ¨ , λdq, a diagonal matrix. We establish that:

∥Λ∥lc “ max
∥x∥2“1

∥Λx∥2 “ max
∥x∥2“1

´

d
ÿ

i“1

λix
2
i

¯1{2

ď max
∥x∥2“1

max
i

|λi|
´

d
ÿ

i“1

x2i

¯1{2

“ max
i

|λi| ¨ max
∥x∥2“1

∥x∥2 “ max
i

|λi|.

From this, it follows that: ∥∥∥diagp
1

σ
q

∥∥∥
lc

“ max
c

ˇ

ˇ

ˇ

1

σc

ˇ

ˇ

ˇ
“

1

minc σc
“

1

σmin
.

B.5. Proof of Theorem 3.3

Theorem 3.3 (CHAIN reduces the gradient norm of weights/latent features.) Denote the loss of discriminator with CHAIN as
L, and the resulting batch features as 9Y . Let qyc P RB be c-th column of qY , ∆yc,∆ 9yc P RB be the c-th column of gradient
BL
BY ,

BL
B 9Y

. Denote ∆wc as the c-th column of weight gradient BL
BW and λmax as the largest eigenvalue of pre-layer featuresA.

Then we have:

∥∆yc∥22 ď ∥∆ 9yc∥22
´

p1 ´ pqψc ` pψmin

ψc

¯2

´
2p1 ´ pqpψmin

Bψc
p∆ 9yTc qycq

2.

∥∆wc∥22 ď λ2max∥∆yc∥22.

Proof: Aligning with Theorem 4.1 from [80] we derive the gradients of the latent feature and the weight. For convenience,
we define 9Y as the resulted interpolated batch features from Eq. 14. By applying the expectation over the M , replacing
it with p, and using the chain rule of the backward propagation, we determine the expected gradient for each ∆y

pbq
c within

∆yc P RB as follows:

∆ypbq
c “ ∆ 9ypbq

c p1 ´ pq ` p
ψmin

ψc

`

∆ 9ypbq
c ´ qypbq

c ¨
1

B

B
ÿ

i

p∆ 9ypiq
c ¨ qypiq

c q
˘

“ ∆ 9ypbq
c

´

p1 ´ pqψc ` pψmin

ψc

¯

´ p
ψmin

ψc
qypbq
c

1

B

B
ÿ

i“1

∆ 9ypiq
c ¨ qypiq

c .

The squared gradient norm for ∆yc is calculated as follows:

∥∆yc∥22 “ ∥∆ 9yc∥22
´

p1 ´ pqψc ` pψmin

ψc

¯2

´ p
2p1 ´ pqpψmin

Bψc
`
p2ψ2

min

Bψ2
c

qp∆ 9yTc qycq
2

ď ∥∆ 9yc∥22
´

p1 ´ pqψc ` pψmin

ψc

¯2

´
2p1 ´ pqpψmin

Bψc
p∆ 9yTc qycq

2.

Using the chain rule, we derive the gradient w.r.t. the weight as follows:
BL

BWic
“

B
ÿ

b“1

BL

By
pbq
c

By
pbq
c

BWic
“ ∆yTc ac.

This leads to:
∆wc “ AT∆yc.

Considering λmax as the largest eigenvalues ofA, which suggests vTAv ď λmax∥v∥22, we obtain the following result:

∥∆wc∥22 “ ∆yTc AA
T∆yc ď λ2max∥∆yc∥22.

C. The decorrelation effect of the stochastic designM
To analyze why the stochastic design M outperforms the deterministic p, we examine the correlation coefficient between
two random variables Yi, Yj from two different channels.

Theorem C.1 Let Yi, Yj be random variables from the i-th and j-th channels, respectively, where i ‰ j. Define pYi “ Yi

ψi
ψmin

as the normalized random variable from channel i after root mean square normalization. Considering an adaptive p under
our control, we distinguish between the deterministic version of CHAIN, i.e. CHAINDtm. and our stochastic CHAIN as:

Deterministic (CHAINDtm.): Y 1
i “ p1 ´ pqYi ` ppYi, (22)

Stochastic (CHAIN): 9Yi “ p1 ´mqYi `mpYi, where m „ Bppq. (23)

Assuming ErYis “ ErYjs “ 0, achievable through our zero mean regularization in Eq. 12, and letting σi, σ1
i, 9σi represent the

standard deviations of Yi, Y 1
i ,

9Yi, respectively, we define and relate the correlation coefficients of the two versions as follows:

ϱ1
ij “

CovpY 1
i , Y

1
j q

σ1
iσ

1
j

ě 9ϱij “
Covp 9Yi, 9Yjq

9σi 9σj
. (24)

Theorem C.1 reveals that the stochastic CHAIN has a lower correlation coefficient among features from different channels
than the deterministic CHAINDtm., indicating that the stochastic designM exhibits a decorrelation effect.
Proof: Given ErYis “ 0, it follows that ErY 1

i s “ Er 9Yis “ 0. Using the covariance definition CovpZ1, Z2q “ ErpZ1 ´

µZ1
qpZ2 ´ µZ2

qs for any two random variables Z1, Z2, we get:
CovpY 1

i , Y
1
j q “ ErY 1

i Y
1
j s, Covp 9Yi, 9Yjq “ Er 9Yi 9Yjs.

Since m is stochastic noise independent of Yi, pYi, and m „ Bppq implying in Erms “ p, we conclude:
ErY 1

i Y
1
j s “ Er 9Yi 9Yjs Ñ CovpY 1

i , Y
1
j q “ Covp 9Yi, 9Yjq. (25)

Next, we explore the relationship between the variances σ12
i and 9σ2

i :

σ12
i “ ErY 12

i s ´ ErY 1
i s2 “ E

”´

`

1 ´ p`
pψmin

ψi

˘

Yi

¯2ı

´ 0 “
`

1 ´ p`
pψmin

ψi

˘2ErY 2
i s, (26)

9σ2
i “ Er 9Y 2

i s ´ Er 9Yis
2 “ p1 ´ pqErY 2

i s ` pErpY 2
i s ´ 0 “ p1 ´ p` p

ψ2
min

ψ2
i

qErY 2
i s. (27)

Comparing Eq. 26 and 27, and considering p P r0, 1s, we establish the following relationship:
´

1 ´ p` p
ψ2

min

ψ2
i

¯

´

´

1 ´ p`
pψmin

ψi

¯2

“ pp1 ´ pq ` pp1 ´ pq
ψ2

min

ψ2
i

´ 2pp1 ´ pq
ψmin

ψi

“pp1 ´ pq

´

1 ´
ψmin

ψi

¯2

ě 0.

Therefore, σ1
i ď 9σi, and similarly σ1

j ď 9σj . Coupled with Eq. 25, we derive the following conclusion:
#

CovpY 1
i , Y

1
j q “ Covp 9Yi, 9Yjq

σ1
iσ

1
j ď 9σi 9σj

Ñ ϱ1
ij “

CovpY 1
i , Y

1
j q

σ1
iσ

1
j

ě 9ϱij “
Covp 9Yi, 9Yjq

9σi 9σj
.

Experimental validation. Decorrelation diversifies feature patterns, promoting a higher feature rank. This is demonstrated
in Figure 8, where CHAIN, employing the stochasticM over the deterministic value p used by CHAINDtm., achieves a higher
effective rank (eRank) [78]. This supports Theorem C.1, underscoring the beneficial effect of stochastic design in M for
decorrelation, and validates the design choice of CHAIN.

0 50 100 150 195
iterations (×1000)

40
70

100
130
eRank

CHAIN
CHAINDtm.

0 50 100 150 195
iterations (×1000)

40
70

100
130
eRank

CHAIN
CHAINDtm.

(a) 10% CIFAR-10 with OmniGAN (d“256). (b) 10% CIFAR-100 with BigGAN (d“256).
Figure 8. Effective rank [78] of all pre-activation features in the discriminator for CHAIN and CHAINDtm. on (a) 10% CIFAR-10 using
OmniGAN (d“256) and (b) 10% CIFAR-100 with BigGAN (d“256).

D. Implementation Details
In this section, we overcome the mini-batch size limitation of CHAINbatch, which relies solely on current batch data statistics,
by developing it to CHAIN, which ultilizes cumulative running forward/backward statistics across training. We also provide
detailed implementation for Network and hyper-parameter choices, and methods applied in our ablation studies.

D.1. Implementation of CHAIN (running cumulative forward/backward statistics across training)

Inspired by [30, 85, 107], we enhance CHAIN to use running cumulative forward/backward statistics. We simplify our
analysis by focusing on the Root Mean Square Normalization (RMSNorm), considering features of a single channel and
omitting the channel index. Additionally, we exclude the constant ϵ, used to avoid division by zero, as it is unnecessary for
this analysis. This refinement enables the representation of the forward process for the root mean square normalization as
follows:

ψ2 “
1

B

B
ÿ

b“1

pypbqq2, (28)

ψ “
a

ψ2, (29)

qypbq “
ypbq

ψ
, (30)

pypbq “ qypbq ¨ ψmin. (31)

Leveraging the chain rule, the gradient calculation can be expressed as follows:
BL

Bqypbq
“

BL
Bpypbq

¨ ψmin, (32)

BL
Bypbq

“
1

ψ

”

BL
Bqypbq

´ qypbq ¨ Ψ
ı

, (33)

where Ψ “
1

B

B
ÿ

i“1

BL
Bqypiq

¨ qypiq. (34)

Examining the forward and backward processes reveals that Eq. 28 and 34 are dependent on the batch size. To eliminate this
dependency, we propose updating the cumulative statistics for these terms as follows:

ψ2
t`1 “ ψ2

t ¨ αd ` ψ2 ¨ p1 ´ αdq, (35)

Ψt`1 “ Ψt ¨ αd ` Ψ ¨ p1 ´ αdq, (36)

where αd, a decay hyperpamameter, is typically set as 0.9. We replace ψ2,Ψ with their cumulative versions ψ2,Ψ. This
forms an effective algorithm for the normalization part of CHAIN, using cumulative forward/backward statistics, as shown
in Alg. 1

Algorithm 1: PyTorch-style pseudo code for Root Mean Square Normalization (RMSNorm) in CHAIN.

Y:BxdxHxW feature, running psi sqr:ψ2, decay:αd, eps:a small constant
def RMSNorm forward(Y, running psi sqr, decay=0.9, eps=1e-5):

psi sqr=Y.square().mean(axis=[0,2,3], keepdim=True) # Eq.28
running psi sqr.data.mul (decay).add (psi sqr, alpha=1-decay) # Eq.35
running psi=(running psi sqr + eps).sqrt() # Eq.29
psi min = running psi.min().detach()
Ycheck = Y / running psi # Eq.30
return Ycheck * psi min # Eq.31

grad Yhat:BxdxHxW BL
B pY

, running psi:ψ, running Psi grad:Ψ, psi min:ψmin decay:αd
def RMSNorm backward(grad Yhat, Ycheck, running psi, running Psi grad, psi min, decay=0.9):

grad Ycheck = grad Yhat * psi min # Eq.32
Psi grad = (Ycheck * grad Ycheck).mean(axis=[0,2,3], keepdim=True) # Eq.34
running Psi grad.data.mul (decay).add (Psi grad, alpha=1-decay) # Eq.36
return (grad Ycheck - Ycheck * running Psi grad) / running psi # Eq.33

D.2. Network and hyper-parameters

CIFAR-10/100. We utilize OmniGAN (d“256 and 1024) and BigGAN (d“256) with a batch size of 32. Following [120],
OmniGAN and BigGAN are trained for 1K epochs on full data and 5K epochs on 10%/20% data setting. CHAIN is inte-
grated into the discriminator, after convolutional layers c P tC1, C2, CSu at all blocks l P t1, 2, 3, 4u, with hyperparameters
set as ∆p “ 0.001, τ “ 0.5, λ “ 20.
ImageNet. We build CHAIN upon BigGAN with 512 batch size. We adopt learning rate of 1e-4 for generator and 2e-
4 for discriminator. CHAIN is applied after convolutional layers c P tC1, C2, CSu at all blocks l P t1, 2, 3, 4, 5u, with
hyperparameters ∆p“0.001, τ“0.5, λ“20.
5 Low-shot images (256ˆ256). We build CHAIN upon StyleGAN2 with a batch size of 64, training until the discriminator
has seen 25M real images. CHAIN is applied after convolutions c P tC1, C2u at blocks l P t3, 4, 5, 6u. We set ∆p “

0.0001, τ“0.9, λ“0.05.
7 Few-shot images (1024ˆ1024) We replace the large discriminator in FastGAN with the one from BigGAN while re-
moving the smaller discriminator. This modification yields FastGAN´Dbig, with the discriminator network architecture
illustrated in Figure 9. We employ a batch size of 8 and run for 100K iterations. We equip the discriminator with CHAIN
after convolutional layers c P tC1, C2, CSu at blocks l P t1, 2, 3, 4, 5u. We set ∆p “ 0.001, τ “ 0.5, λ “ 20.

Conv!×!, s:2, p:1
LReLU

Conv!×!, s:2, p:1

256#×$!

128#×$#

64#×𝑑

32#×2𝑑

𝐵!

𝐵"

𝐵# 𝑆𝐸𝐵! 𝐵$ 𝑆𝐸𝐵" 𝐵%
16#×4𝑑

𝑆𝐸𝐵#
8#×8𝑑

𝐵&

head

8#×8𝑑

D loss
1

LReLU
Conv%×%
LReLU
Conv%×%

AvgPool#×#

Conv&×&
AvgPool#×#

LReLU
Conv%×%
LReLU
Conv%×%

AvgPool!×!

Conv!×!
Swish
Conv&×&
Sigmoid

Discriminator of FastGAN−𝐷234 ResBlock down

𝐵!, … , 𝐵% 𝐵&

ResBlock none

𝑆𝐸𝐵!, 𝑆𝐸𝐵", 𝑆𝐸𝐵#

Skip-Layer
Excitation Block

𝑿'()' 𝑿*+,
𝒙 ∈ ℝ!-"$'×#

AvgPool&×&
8𝑑

Figure 9. The discriminator of FastGAN´Dbig. d: The base feature dimension. Conv4ˆ4: A convolutional layer with a 4 ˆ 4 kernel size.
LReLU: Leaky ReLU activation with a slope 0.2. AvgPool2ˆ2: Average pooling downscales by a factor of 2. AvgPool4ˆ4: Adaptive
average pooling with a 4 ˆ 4 output spatial size. Xhigh: The higher resolution feature map. X low: The lower resolution feature map. For
more details on skip-layer excitation block, please refer to [57] and [28].

D.3. Implementation for AGPinput and AGPweight

In Table 6, we provide a comparison of CHAIN with two gradient penalization methods: AGPinput and AGPweight. For
AGPinput, we implement ∥ BD

Bx ∥22 and ∥ Bf
Bx∥22 where f represents the feature extractor of discriminatorD. Regarding AGPweight,

we also implement ∥ BD
Bθd

∥22 and ∥ Bf
Bθd

∥22. We search the penalization strength λGP within the range [1e-10, 20] for each dataset
and variant. For 10% CIFAR-10 w/ OmniGAN (d“ 256), the optimal settings are: AGPinput with ∥ Bf

Bx∥22 and λGP“5, and
AGPweight with ∥ Bf

Bθd
∥22 and λGP set to 1e-6. For 10% CIFAR-100 w/ BigGAN (d“256), the best configurations are: AGPinput

with ∥ Bf
Bx∥22 and λGP“5, and AGPweight with ∥ BD

Bθd
∥22 and λGP set to 2e-6.

E. Additional Experiments
E.1. Comparison with leading methods

Table 7 compares CHAIN with Lottery-GAN [12], LCSA [70], AugSelf-GAN [27], and NICE [68], showing the superiority
of CHAIN. Unlike AugSelf-GAN, LotteryGAN, and NICE, which need extra forward or backward passes for augmenta-
tion, and LCSA, which demands more computation and weights for dictionary learning, CHAIN is more efficient, needing
negligible computation for normalization.

Table 7. Comparing CIFAR-10/100 results with varying data percentages, using CHAIN vs. other leading methods, on BigGAN (d“256q.

Method
CIFAR-10 CIFAR-100

10% data 20% data 100% data 10% data 20% data 100% data
ISÒ tFIDÓ vFIDÓ ISÒ tFIDÓ vFIDÓ ISÒ tFIDÓ vFIDÓ ISÒ tFIDÓ vFIDÓ ISÒ tFIDÓ vFIDÓ ISÒ tFIDÓ vFIDÓ

LeCam+DA 8.81 12.64 16.42 9.01 8.53 12.47 9.45 4.32 8.40 9.17 22.75 27.14 10.12 15.96 20.42 11.25 6.45 11.26
+Lottery-GAN 8.77 11.47 15.48 8.99 7.91 11.83 9.39 4.21 8.25 9.05 20.63 25.31 9.55 15.18 20.01 11.28 6.32 11.10
+LCSA 8.96 10.05 13.88 9.04 6.95 10.95 9.47 3.75 7.83 10.28 18.24 23.12 10.67 10.16 15.00 11.17 5.85 10.64
+NICE 8.99 9.86 13.81 9.12 6.92 10.89 9.52 3.72 7.81 9.35 14.95 19.60 10.54 10.02 14.93 11.28 5.72 10.40
+AugSelf-GAN 9.04 8.98 12.94 9.13 6.42 10.54 9.48 3.68 7.73 9.89 14.02 18.84 10.43 11.32 16.02 11.25 5.43 10.14
+CHAIN 8.96 8.54 12.51 9.27 5.92 9.90 9.52 3.51 7.47 10.11 12.69 17.49 10.62 9.02 13.75 11.37 5.26 9.85

E.2. Gradient analysis on 10% CIFAR-100 using BigGAN (d“256)

In this section, we present experiments conducted on 10% CIFAR-100 using BigGAN (d“ 256). Figure 10 provides addi-
tional validation of Theorem 3.1, illustrating how the centering step leads to feature differences and an associated increase in
gradients. Meanwhile, Figure 11 confirms Theorem 3.2, highlighting that the scaling step causes gradient explosions during
GAN training and results in rank deficiency.

0 50 100 150 195
iterations (×1000)

0.0

0.2

0.4

0.6

co
si
ne

si
m
ila

rit
y

BigGAN +0C +A0C

(a) Mean cosine similarity.

0 50 100 150 195
iterations (×1000)

20

50

80

110

gr
ad
ie
nt

no
rm

BigGAN +0C +A0C

(b) Gradient norm.
Figure 10. (a) Mean cosine similarity of discriminator pre-activation features, and (b) gradient norm of the feature extractor w.r.t. the input
are evaluated for BigGAN, BigGAN+0C (using the centering step in Eq. 6), and BigGAN+A0C (adaptive interpolation between centered
and uncentered features). Evaluation conducted on 10% CIFAR-100 data with BigGAN (d“256).

E.3. The rank efficiency of CHAIN over AGPweight

Both CHAIN and AGPweight can reduce the discriminator weight gradient to improve generalization, but CHAIN gains a
crucial advantage from normalization. The normalization step in CHAIN balances features among channels and orthogo-
nalizes features [16, 17]. Figure 12 clearly illustrates that CHAIN achieves a higher effective rank compared to AGPweight.
Discriminators with higher rank efficiency can fully utilize their width (balanced channels) and depth, resulting in enhanced
expressivity and superior representation capability.

0 50 100 150 195
iterations (×1000)

0.0
2.5
5.0
7.5

10.0
∥∂D
∂x

∥2

0 50 100 150 195
iterations (×1000)

0
30
60
90

120

eRank
BigGAN +CHAIN +CHAIN+0C +CHAIN−LC

(a) Gradient norm. (b) Effective rank.
Figure 11. (a) Gradient norm of discriminator output w.r.t. input during training, and (b) effective rank [78] of the pre-activation features
in discriminator, are evaluated on 10% CIFAR-100 data with BigGAN (d“ 256). CHAIN`0C indicates CHAIN with the centering step
included, while CHAIN´LC represents CHAIN without the Lipschitzness constraint.

0 50 100 150 195
iterations (×1000)

40
70

100
130
eRank

CHAIN
AGPweight

0 50 100 150 195
iterations (×1000)

40
70

100
130
eRank

CHAIN
AGPweight

(a) 10% CIFAR-10 with OmniGAN (d“256). (b) 10% CIFAR-100 with BigGAN (d“256.)
Figure 12. Effective Rank [78] for CHAIN and AGPweight on (a) 10% CIFAR-10 using OmniGAN (d“256) and (b) 10% CIFAR-100 with
BigGAN (d“256).

E.4. The stability of feature norm of CHAIN during training

Our work examines modern discriminators with residual blocks, where the main and skip branch features are added at the
end of each block (see Figure 1). Despite the scaling factor ď 1 induced by the Lipschitz constraint (as in Eq. 13), feature
norms remain stable across layers thanks to the skip connections. Figure 13 presents feature norms at the end of each block,
averaged over early (0´ 5k iteration) and later training stages (ą 5k iteration). Initially, both methods exhibit similar feature
norms, but as training processes, baseline norms increase while CHAIN maintains stable norms across layers due to the
adaptive interpolation between normalized and unnormalized features (as in Eq. 14).

1 2 3 4
Block

0

4

8

12

fe
at
ur
e
no
rm OmniGAN

+CHAIN

1 2 3 4
Block

0

4

8

12 OmniGAN
+CHAIN

(a) ă 5k iteration. (b) ą 5k iteration.
Figure 13. Feature norms during training w/ vs. w/o CHAIN, are evaluated on 10% CIFAR-10 using OmniGAN (d“256).

F. Training overhead

Table 8 presents the number of parameters, multiply-accumulate (MACs) operations (for both generator and discriminator),
the number of GPUs, and the cost in time (seconds per 1000 images, secs/kimg). Notably, CHAIN introduces only a small
fraction of the time cost, ranging from 6.3% to 9.6% across these datasets.

Table 8. Number of parameters, MACs and secs/kimg for models with vs. without the CHAIN. Experiments were performed on NVIDA
A100 GPUs.

Dataset Resolution Backbone d GPUs
Baseline +CHAIN

#Par. MACs sec/kimg #Par. MACs sec/kimg

CIFAR-10 32ˆ32
BigGAN

256 1
8.512M 2.788G 0.79 8.512M 2.791G 0.84

OmniGAN 8.512M 2.788G 0.80 8.512M 2.790G 0.85

CIFAR-100 32ˆ32
BigGAN

256 1
8.811M 2.788G 0.80 8.811M 2.791G 0.85

OmniGAN 8.811M 2.788G 0.81 8.811M 2.791G 0.85
ImageNet 64ˆ64 BigGAN 384 2 115.69M 18.84G 1.79 115.69M 19.12G 1.91

5 Low-shot datasets 256ˆ256 StyleGAN2 512 2 48.77M 44.146G 5.66 48.77M 44.151G 6.06
7 Few-shot datasets 1024ˆ1024 FastGAN´Dbig 64 1 42.11M 23.98G 32.79 42.11M 24.00G 35.94

G. Generated Images
Figures 14, 15, 16, 17 and 18 provide images generated on CIFAR-10, CIFAR-100, ImageNet, the 5 low-shot image and
the 7 few-shot image datasets, with or without CHAIN. The comparison highlights the enhancement in image quality and
diversity achieved with the application of CHAIN.

(a) ADA (b) ADA+CHAIN

Figure 14. Generated images using (a) ADA and (b) ADA+CHAIN on 10% CIFAR-10 with OmniGAN (d“1024). Note that ADA leaks
the rotation augmentation artifacts (row 1, 2 and 10).

(a) DA (b) DA+CHAIN

Figure 15. Generated images using (a) DA and (b) DA+CHAIN on 10% CIFAR-100 with BigGAN (d “ 256). We present the last 20
of 100 classes. CHAIN clearly enhances the diversity and quality of the generated images. Notably, DA leaks the cutout augmentation
artifacts (row 1, 2, 4 and 18).

2.
5%

Im
ag

eN
et

(6
4

ˆ
6
4

)
10

%
Im

ag
eN

et
(6
4

ˆ
6
4

)

(a) BigGAN+ADA (b) BigGAN+ADA+CHAIN

Figure 16. Visual comparison between ADA vs. ADA+CHAIN on 2.5% and 10% ImageNet(64 ˆ 64) data. ADA struggles to capture the
structure and diversity of the data, while CHAIN clear improves the diversity and visual quality of generated images.

O
ba

m
a

G
ru

m
py

C
at

Pa
nd

a
A

ni
m

al
Fa

ce
C

at
A

ni
m

al
Fa

ce
D

og

(a) StyleGAN2+ADA (b) StyleGAN2+ADA+CHAIN

Figure 17. Visual comparison between ADA and ADA+CHAIN on 100-shot and AnimalFace datasets (256ˆ256). The integration of
CHAIN clearly improves the image quality.

Sh
el

ls
Sk

ul
ls

A
ni

m
e

Fa
ce

B
re

C
aH

A
D

M
es

si
do

rS
et

1
Po

ke
m

on
A

rt
Pa

in
tin

g

(a) Real images (b) FastGAN´Dbig+CHAIN.

Figure 18. Qualitative results of FastGAN´Dbig+CHAIN on 7 few-shot image dataset (1024ˆ1024). (a) shows real training images and
the (b) presents images generated by FastGAN´Dbig+CHAIN. CHAIN is capable of generating photo-realistic images with fine details
even from a limited number of training samples.

