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In this supplementary material, we provide additional
details regarding the main manuscript. More specifically:
• In Sec. 1, we provide further explanation of the datasets,

protocols and metrics.
• In Sec. 2, we provide the detailed hyperparameters of

different continual learning settings.
• In Sec. 3, we provide additional experiments and results.

1. Datasets, Protocols and Metrics
In Sec. 1.1, we present the statistical information for the
datasets used in our experiments. In Sec. 1.2, we describe the
continual learning protocols that are commonly used in the
literature. Finally, in Sec. 1.3, we introduce the evaluation
metrics used to measure the performance comprehensively.

1.1. Datasets statistics

• Split-CIFAR-100 (Task-IL). The CIFAR100 dataset [8]
comprises 60,000 32×32 images belonging to 100 classes.
In task-incremental learning setting, Split-CIFAR-100
splits the original CIFAR-100 [8] into 10 tasks, 10 dis-
joint classes per task.

• CIFAR-100 (Class-IL). In the class-incremental learning
setting, we divide the classes into mutually exclusive sets.
The first task consists of B classes, and each subsequent
task consists of C classes.

• ImageNet-100 (Class-IL). ImageNet-100 [13] is the subset
of ImageNet1000 [3] containing 100 classes [13]. These
classes are selected from the first 100 classes after a ran-
dom shuffle with seed 1,993 [19]. Each image is repre-
sented by 224×224 pixels.

• OfficeHome (Domain-IL). OfficeHome [16] consists of
images from four different domains: Artistic images, Clip

⋆Equal contribution. †Corresponding author.

Art, Product images and Real-World images. For each
domain, the dataset contains images of 65 object categories
found typically in Office and Home settings. Each image
is represented by 224×224 pixels.

We use the official categories provided by the respec-
tive dataset creators for all datasets, which can be accessed
through the dataset resources [3, 8, 16]. These categories are
also presented in Fig. 1, Fig. 3, and Fig. 2 for CIFAR100,
ImageNet100, and OfficeHome, respectively.

1.2. Continual Learning Protocols

In continual learning (CL), the model is trained in a task-
by-task manner. We define a sequence of tasks denoted
by D = {D1, · · · ,DT }. The t-th task, denoted by Dt =
{(xt

i, y
t
i)}

nt
i=1, comprises tuples consisting of an input sam-

ple xt ∈ Xt and its corresponding label yt ∈ Yt. Depending
on the target set and the number of training samples, CL
protocols can be divided into four common categories:

• Task-incremental learning where the target set of test sam-
ple xt is Yt.

• Class-incremental learning where the target set of test
sample xt is ∪t

i=1Yi.

• Few-shot Class-incremental learning where the target set
of test sample xt is ∪t

i=1Yi and the nt(t > 1) of training
set is limited.

• Domain-incremental learning where each task shares the
same target set, i.e., Y1 = Y2 = · · · = YT .

1.3. Evaluation Metrics

Formally, suppose the model is conducted for N tasks and
let Ai.j denote the classification accuracy evaluated on the
test set of the task i after the incremental learning of the j-th
task is Ai.j . Our method is extensively evaluated by three
commonly used metrics:
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Method
B=50, C=10 B=50, C=5 B=50, C=2

Avg (↑) Last (↑) F (↓) Avg (↑) Last (↑) F (↓) Avg (↑) Last (↑) F (↓)

Oracle 77.6 77.6 - 77.6 77.6 - 77.6 77.6 -
w/ Ours 78.0 78.0 - 78.0 78.0 - 78.0 78.0 -

Distillation-based methods
LUCIR [5] 65.9±1.7 55.8±1.7 24.9±1.7 60.9±1.1 51.4±0.4 26.7±1.5 52.9±0.5 42.5±1.5 34.0±0.6

w/ Ours 67.5±0.8
(+1.6)±1.2

57.1±1.5

(+1.3)
22.5±0.6

(-2.4)
62.1±1.9

(+1.2)
53.2±2.0

(+1.8)
22.4±1.6

(-4.3)
53.5±1.2

(+0.6)
43.4±1.6

(+0.9)
31.2±0.5

(-2.8)
BiC [17] 63.5±0.9 51.2±0.5 16.2±1.0 57.0±0.1 45.0±0.9 15.9±1.0 44.6±0.0 33.2±0.8 11.1±0.7

w/ Ours 64.7±0.9

(+1.2)
52.4±0.8

(+1.2)
11.8±1.0

(-4.4)
58.6±0.5

(+1.6)
46.3±0.9

(+1.3)
14.5±0.8

(-1.4)
46.7±0.6

(+2.1)
35.1±0.9

(+1.9)
6.3±0.8

(-4.8)

Rectification-based methods
CwD [15] 66.9±0.3 57.4±0.8 23.4±0.9 62.3±0.8 52.5±0.7 26.9±0.6 56.3±0.4 44.7±0.8 36.2±0.5

w/ Ours 68.0±0.4

(+1.1)
58.4±0.2

(+1.0)
22.8±0.9

(-0.6)
63.3±1.0

(+1.0)
53.6±0.5

(+1.1)
26.0±0.5

(-0.9)
58.3±0.2

(+2.0)
46.1±0.5

(+1.4)
34.1±0.3

(-2.1)
IL2M [2] 65.7±0.1 55.9±0.3 25.2±0.7 59.9±0.6 49.9±0.1 29.7±0.2 52.5±0.8 42.0±0.3 35.3±0.6

w/ Ours 68.5±0.2

(+2.8)
59.2±0.6

(+3.3)
21.2±0.2

(-4.0)
60.8±0.9

(+0.9)
49.8±0.7

(-0.1)
29.4±0.5

(-0.3)
54.0±0.4

(+1.5)
45.7±0.5

(+3.7)
29.2±0.3

(-6.1)

Table 1. Results on class-incremental experiments on CIFAR100 of Average accuracy (%), last phase accuracy (%) and forgetting rate F
(%) with and without language-guided representation at various CL settings. B denotes the number of classes at initial task, C denotes the
number of classes in each task after the initial one.

Method
K=4 K=8 K=16 K=32

Avg (↑) Last (↑) F (↓) Avg (↑) Last (↑) F (↓) Avg (↑) Last (↑) F (↓) Avg (↑) Last (↑) F (↓)

Buffer size = 0
LUCIR [5] 13.9±0.4 7.3±0.6 40.9±0.4 23.1±0.8 10.7±1.0 52.3±0.6 30.9±0.3 12.8±0.1 53.1±0.1 32.3±0.3 12.9±0.8 57.4±0.8

w/ Ours 13.9±0.2 6.0±0.9 30.2±0.5 36.9±0.4 12.7±0.5 38.1±0.3 45.4±0.8 20.0±0.9 35.9±0.2 46.3±0.6 20.4±0.5 41.6±0.1

(+0.0) (-1.3) (-10.7) (+13.8) (+2.0) (-14.2) (+14.5) (+7.2) (-17.2) (+14.0) (+7.5) (-15.8)

Buffer size = 1
LUCIR [5] 39.1±0.2 15.2±0.3 29.1±0.9 40.2±0.1 18.7±0.5 35.0±0.4 31.1±0.8 19.2±0.4 31.7±0.4 38.7±0.9 23.9±0.0 37.9±0.3

w/ Ours 41.6±0.2 19.3±0.9 10.6±0.2 44.9±0.8 21.8±0.8 13.3±0.2 38.9±0.3 24.7±0.2 13.8±0.5 44.9±0.6 29.2±0.3 18.9±0.9

(+2.5) (+4.1) (-18.5) (+4.7) (+3.1) (-21.7) (+7.8) (+5.5) (-17.9) (+6.2) (+5.3) (-19.0)

Table 2. Results on few-shot class-incremental experiments on ImageNet100 under B = 50, C = 10.

• Last-step accuracy (Last) which measures the overall per-
formance at last:

Last =
1

N

N∑
i=1

Ai,N (1)

• Average incremental accuracy (Avg) which measure the
performance evolution along the learning trajectory:

Avg =
1

N

N∑
j=1

(
1

j

j∑
i=1

Ai,j) (2)

• Forgetting rate (Forget) which measures the degree of
forgetting on learned tasks:

Forget =
1

N − 1

N−1∑
i=1

max{Ai,1, · · · , Ai,N−1} −Ai,N

(3)
Besides, following [12], we perform a subspace similarity

analysis to measure the representation drifting. Given the

input from the same task, let Ft,Ft′ ∈ Rn×d denote the
output of the encoder after the t-th task and after the t′-th
task (t′ > t), respectively. We compute the PCA decomposi-
tion of Ft, i.e., the eigenvectors (v1, v2, · · · ) of F⊤

t Ft. Let
Vk,t are the top-k principal directions of Ft, and Vk,t′ the
corresponding matrix for Ft′ . The representation drifting
from the t-th task to the t′-th can be defined as:

RepreDriftk(Ft,Ft′) = 1− 1

k
∥VT

k,tVk,t′∥2F . (4)

1
k∥V

T
k,tVk,t′∥2F measures the similarity of the subspaces

spanned by Ft and Ft′ . The smaller the similarity between
the subspaces at task t and t′, the greater the representation
drifting.

2. Hyperparameter details
We provide the detailed hyperparameters of class-
incremental learning, task-incremental learning, and domain-
incremental experiments in Sec. 2.1, Sec. 2.2 and Sec. 2.3,
respectively.



# Template Avg (↑) Last (↑) F (↓)

1 Baseline 65.9% 55.8% 24.9%

2 {object} 67.5% 57.1% 22.5%
3 a photo of a {object} 67.5% 57.5% 22.5%
4 Templates ensemble [11] 67.2% 57.9% 21.7%

Table 3. Comparison with different prompting techniques on
CIFAR-100 under class-incremental setting B = 50, C = 10.

2.1. Class-incremental learning

For CNN-based methods [2, 5, 9, 15, 17], we employ the
SGD optimizer [14] with an initial learning rate of 0.1, a
momentum of 0.9, and a batch size of 128. In the experi-
ments performed on CIFAR100, all models are trained for
160 epochs within each task, with the learning rate decreased
by a factor of 10 at the 80-th and 120-th epochs. For Ima-
geNet100, all models are trained for 90 epochs within each
task, with the learning rate reduced by a factor of 10 at the
30-th and 60-th epochs.

For ViT-based methods such as DyTox [4], we follow
the original hyperparameters. We train the model for 500
epochs per task with Adam [6] with a learning rate of 5e-
4, including 5 epochs of warmup. At the end of each task
(except the first), we finetune the model for 20 epochs with
a learning rate of 5e-5 on a balanced dataset.

2.2. Task-incremental learning

The learning rate starts from 1e-4 and decays at epochs 30
and 60 with a multiplier of 0.1. The total epochs are 80.
The batch size is set to 32. The regularization coefficient of
EWC [7], MAS [1] and SI [18] are set to 100, 0.1 and 10,
respectively.

2.3. Domain-incremental learning

We use the Adam [6] optimizer with an initial learning rate
0.001, and a batch size of 128. The epochs are 80 and the
learning rate is decay by 10 at the 40-th and 60-th epochs.
The regularization coefficients of EWC [7], MAS [1], SI [18]
and GEM [10] are set to 100, 0.1, 0.3 and 5, respectively.

3. Additional Experiments Analysis
In Sec. 3.1 and Sec. 3.2, we present additional results on
class-incremental learning and few-shot class-incremental
learning experiments, respectively. Moreover, in Sec. 3.3,
we offer an analysis of the prompting technique.

3.1. Class-incremental Learning

In the main manuscript, Table 1 presents the results of class-
incremental learning (CIL) experiments on CIFAR100 under
the setting where the number of base classes (B) equals the

number of incremental classes (C). To provide further in-
sights, we supplement additional results under the setting
where B = 50 in Tab. 1. The results show that our proposed
method consistently and significantly improves the perfor-
mance across all metrics under the B = 50 setting. These
results provide further evidence of the effectiveness of our
approach in various CIL settings.

3.2. Few-shot Class-incremental Learning

The results of few-shot class-incremental learning are dis-
played in Figure 7 of the main manuscript. To provide more
quantitative results, we also present them in Tab. 2. It is
evident that our proposed approach consistently achieves sig-
nificant performance gains, with or without buffers. These
findings provide further evidence that our method facilitates
effective knowledge transfer from the initial well-learned
task.

3.3. Prompting Technique

Prompting [11] is a widely used technique to transfer knowl-
edge from pretrained language models. In Tab. 3, we com-
pare three different settings for prompting. In setting #1,
we used the category name as input without any additional
templates. In setting #2, we used the template a photo
of a {object}. Finally, in setting #3 [11], we averaged
the results of 80 different templates. Our results show that
the use of templates can slightly ease the forgetting, which
we attribute to the fact that the template ensemble enhances
the stability of the generated features and reduces the ef-
fect of noise. These findings highlight the robustness and
generalizability of our approach.
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Figure 1. The categories of CIFAR100.



Alarm
Clock
Backpack
Batteries
Bed
Bike
Bottle
Bucket
Calculator
Calendar
Candles
Chair
Clipboards
Computer
Couch
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Desk Lamp
Drill
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File
Cabinet
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Helmet
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Keyboard
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Laptop
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Pen
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Printer
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Figure 2. The categories of OfficeHome.
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