
Appendix

A. Implementation Details
A.1. Training Setup

For the training of our models, we generally follow the
training settings in [1], with a modification on the training
objective, i.e. using the masked language modeling objec-
tive described in Section 3 instead of the original diffusion-
based denoising objective. Additionally, we adopt a larger
batch size of 2048 and correspondingly increase the learn-
ing rate to 4e-4 for the ImageNet dataset. The results on
CC3M are based on a publicly available pre-trained Muse
model from github1.

A.2. Strategy Optimization

For generation strategy optimization, we adopt SGD [22] as
our optimizer for the generation strategy and perform 100
epochs of gradient descent. We initialize the strategies with
heuristic-based configurations and simply set k = λ = 1.
Notably, initialization is not decisive for the effectiveness
of our method, as we find a highly naive initialization (ini-
tializing τ1(t) = τ2(t) = s(t) = 1, and r(t) to linearly
decrease from 1 to 0) can also perform well:

Baseline Our-Init. Naive-Init.
FID-50K 8.40 4.30 4.45 (+0.15)

Here we take AutoNAT-S on ImageNet-256 as an example,
both our adopted initialization and the naive initialization
significantly outperform the baseline result (in gray).

The learning rates are set to 0.1 for hyperparameters
τ1, τ2, s and 0.001 for r. The step sizes for numerical gra-
dient estimation are set to 0.1 for τ1, τ2, s and 0.01 for r.
For results on ImageNet-512, we additionally incorporate a
gradient clipping of 10 to stabilize the training process.

Regarding the optimization of the training strategy, we
perform a greedy search in (α/β, β) space in practice, as
we find this implementation technique results in a more sta-
ble optimization process. The step size for line search in the
greedy optimization process is set to 1. To expedite the op-
timization process, we train models under each strategy for
only 50K steps, assessing performance as a proxy indicator
for a fully converged model.

B. Additional Results
Visualization of the optimized strategies. In Figure 1,
we visualize the optimized strategies for AutoNAT-S on
ImageNet-256 as an example (T = 4).
CLIP score-based AutoNAT. In Section 5, we utilize
the Fréchet Inception Distance (FID) [16] for optimization
evaluation. However, our AutoNAT framework is general

1https://github.com/baaivision/MUSE-Pytorch

and flexible, which can be easily extended beyond FID. The
table below adopts the CLIP score as the evaluation metric,
showcasing the adaptability of AutoNAT in adopting vari-
ous evaluation metrics:

Dataset T U-ViT [1] AutoNAT
MS-COCO [19] 8 0.296 0.314

Dataset T Muse [2] AutoNAT-Muse
CC3M [23] 8 0.283 0.292

To maintain consistency with prior works [2, 18], here we
adopt ViT-B/32 to calculate the CLIP score.
Additional visualization results. We provide a qualitative
comparison between AutoNAT and baseline (heuristic con-
figuration) on both class-conditional and text-to-image gen-
eration in Figure 2 and Figure 3. Here we combine FID with
other metrics such as IS, CLIP score as the evaluation met-
ric F as we find this yields better results. For text-to-image
generation, we adopt a muse model trained on large-scale
text-to-image dataset [21].

C. Limitations and Future Work
While AutoNAT effectively improves the configuration
of non-autoregressive Transformers, future research could
fruitfully focus on enhancing the interpretability of the iden-
tified strategies. This could provide clearer insights for im-
proved training and generative paradigms. Additionally, ex-
tending the evaluation metric within the AutoNAT frame-
work through a wider array of metrics [4, 17, 35] repre-
sents a promising direction. Moreover, exploring the ap-
plication of AutoNAT across diverse generative tasks and
domains [3, 5–7, 15] or even synthesizing datasets for tra-
ditional visual perception tasks [14, 24, 33, 34], offers the
potential for broadening its impact. Finally, integrating ad-
vanced training methods [20, 25, 26, 28, 29, 31], architec-
tural innovations [27, 30, 32], and adaptive inference tech-
niques [8–13] could further enhance the capabilities and ap-
plicability of non-autoregressive Transformers.

References
[1] Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are

worth words: a vit backbone for score-based diffusion mod-
els. In CVPR, 2023. 1

[2] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy,
William T Freeman, Michael Rubinstein, et al. Muse: Text-
to-image generation via masked generative transformers. In
ICML, 2023. 1

[3] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. 2022. 1

[4] Jiayi Guo, Chaoqun Du, Jiangshan Wang, Huijuan Huang,
Pengfei Wan, and Gao Huang. Assessing a single image in
reference-guided image synthesis. In AAAI, 2022. 1
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Figure 1. Visualization of optimized training and generation strategies for AutoNAT-S on ImageNet-256 (T = 4).
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Figure 2. Qualitative comparison on class-conditional image generation.
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Figure 3. Qualitative comparison on text-to-image generation.
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