
Joint-Task Regularization for Partially Labeled Multi-Task Learning

Supplementary Material

Here, we present additional material which could not be
included in the main paper due to space constraints.

6.1. JTR Pseudo-Code

Algorithm 1: Pseudo-code for JTR.

for e = 1 to num epochs do
From D, draw a mini-batch
B = ((x0, y0), · · · , (xB , yB))

for (x, y) ∈ B do

// get model predictions
ŷ = hψ(fϕ(x))

// supervised loss for labeled
tasks

L = 0
for t ∈ Tx do

L = L+ 1
|Tx|L

t(ŷt, yt)

// stack predictions and labels

Ŷ = [ŷ1x · · · ŷKx]
Y = [δ(x, 1) · · · δ(x,K)]

// apply distance loss

L = L+ cdist · LDist(gθ1(Ŷ), gθ1(Y))
// apply reconstruction loss

L = L+ crecon · (LRecon(g(⟨Ŷ ⟩), ⟨Ŷ ⟩) +
LRecon(g(⟨Y ⟩), ⟨Y ⟩))

// update parameters
for ζ ∈ {ϕ, ψ, θ1, θ2} do

ζ = SGD(L, ζ)

In the above pseudo-code, δ(x, t) =

{
ytx t ∈ Tx
ŷtx t /∈ Tx

, and

⟨·⟩ detaches a variable from the graph to prevent backprop-
agation through the variable.

6.2. Implementation Details

Hyperparameters Across all experiments, we hold all
hyperparameters constant for each method for all label sce-
narios. We use the default hyperparameter values provided
by the official MTPSL source code repository for baseline
methods [23, 33]. For JTR, we keep hyperparameter adjust-
ments to a minimum with the only new/modified parame-
ters being: cdist = 4, crecon = 2, and the batch size (4
for NYU-v2, 16 for Cityscapes, 8 for Taskonomy). For ad-
ditional information, please refer to our code repository at
github.com/KentoNishi/JTR-CVPR-2024.

Auto-Encoder We use the same SegNet architecture as
the model itself. The latent dimensions are 512×9×12, and
we did not tune this parameter. For an ablation study of this
parameter, please see the “Bottleneck Size” ablation study
in Sec. 6.4. In terms of interpretation, the JTR auto-encoder
captures task relations which efficiently encode predictions
and labels across multiple tasks in unison. The joint-task
embeddings for Yx and Ŷx can be thought of as compressed
representations of predictions and targets in a shared space.
The compression is facilitated by the reconstruction compo-
nent of JTR—since the JTR encoder needs to compress its
inputs to a reduced-dimension space, the encoder exploits
commonalities and patterns across all tasks to create a com-
pact and non-trivial encoding. This means that regulariza-
tion applied in this feature space is not per-task; rather, all
tasks are regularized at once.

Complexities of MTPSL MTPSL relies on FiLM to con-
dition on task-pairs. This involves adding parameters of
shapes (2C)×K×(K−1) and 1×C for every Conv2D layer
in MTPSL (C channels, K tasks), as well as implementing
affine transformations for each layer. FiLM parameters also
require a separate optimizer, LR, scheduler, etc. This makes
using off-the-shelf architectures (i.e. ResNet) challenging,
since the model’s inner code must be modified. In contrast,
JTR has no per-layer intricacies and is easier to implement.

Batching JTR and all baselines use simple random batch-
ing for nearly all experiments. Two notable exceptions are
NYU-v2 “extended” and “Partially (Un)labeled MTL,” for
which we under/over-sample and append the additional data
to each batch by a fixed quantity. The number of addi-
tional data examples added per batch are 4 for NYU-v2 “ex-
tended” and 1 for “Partially (Un)labeled MTL.”

6.3. Explaining Results

Copied Baselines For every experiment we ran, MTPSL
and JTR use the same augmentation technique and dat-
aloader. This ensures that any performance gain is solely
due to JTR’s advantages over MTPSL. However, for results
for non-MTPSL baselines marked with * in some tables, we
present scores directly sourced from [33] to maintain con-
sistency, since some baselines (i.e. Direct / Perceptual Map)
were not reproducible with RandAugment. For further clar-
ity, we supplement our results with comparisons of MTPSL
and JTR relative to Supervised MTL reproduced with Ran-
dAugment in Tab. 10.

http://github.com/KentoNishi/JTR-CVPR-2024

Method Seg. ↑ Depth ↓ Norm. ↓ ∆% ↑
NYU-v2 “onelabel”

Supervised MTL 22.52 0.6920 35.27 +0.000
MTPSL 30.40 0.5926 31.68 +19.84
Ours (JTR) 31.96 0.5919 30.80 +23.02

NYU-v2 “randomlabels”
Supervised MTL 31.87 0.5957 31.64 +0.000
MTPSL 35.60 0.5576 29.70 +8.077
Ours (JTR) 37.08 0.5541 29.44 +10.09

Cityscapes “onelabel”
Supervised MTL 68.35 0.0178 — +0.000
MTPSL 72.09 0.0168 — +5.545
Ours (JTR) 72.33 0.0163 — +7.125

Table 10. Results for MTPSL and JTR relative to Supervised MTL
results reproduced with RandAugment.

Dataset Scenario Seg. ↑ Depth ↓ Norm. ↓
NYU-v2 onelabel 23.65 0.7513 30.56
NYU-v2 randomlabels 28.68 0.7530 29.47
Cityscapes onelabel 70.32 0.0134 —

Table 11. Per-task Single-Task Learning (STL) results.

NYU-v2 Cityscapes
Method onelabel randomlabels onelabel

Supervised MTL –4.100 +8.216 –17.82
MTPSL +15.33 +16.43 –11.43
Ours (JTR) +18.52 +18.60 –9.392

Table 12. ∆% scores relative to per-task STL results on NYU-v2
and Cityscapes. All results were obtained with RandAugment.

Method onelabel randomlabels halflabels

Supervised MTL +2.594 –2.817 –1.859
Consistency Reg. +3.622 +0.592 +2.025
MTPSL +5.852 +3.248 +2.026
Ours (JTR) +5.482 +3.919 +2.785

Table 13. ∆% scores relative to STL on Taskonomy.

Statistical Significance MTL training is expensive;
therefore, we followed previous works [33, 38, 58, 71] in
running each method only once using the same seed. For
additional clarity, we also ran JTR and MTPSL three times
with the same seed on NYUv2 “randomlabels.” The 95%
confidence intervals in Tab. 14 show that JTR’s ∆% gap is
statistically significant.

Single-Task Learning Baseline In our experiments, we
report the ∆% scores relative to Supervised MTL because
we believe it is the most relevant and fair comparison base-
line. Alternatively, comparisons can be made against scores
achieved with Single-Task Learning (STL). However, STL
takes at least N -times more parameters, VRAM, and com-

Method Seg. ↑ Depth ↓ Norm. ↓ ∆% ↑
MTPSL 35.45±0.247 0.5636±0.0059 29.95±0.344 +18.92±0.88
JTR 36.86±0.574 0.5517±0.0024 29.39±0.088 +21.82±0.58

Table 14. Mean and SD on NYU-v2 randomlabels.

Method Seg. ↑ Depth ↓ Norm. ↓ ∆% ↑
Supervised MTL 48.79 0.4528 25.35 +0.000
Consistency Reg. 46.02 0.4855 27.44 –7.048
MTPSL [33] 48.37 0.4228 25.39 +1.869
Ours (JTR) 49.07 0.4129 25.05 +3.523

Table 15. Partially labeled multi-task learning results on NYU-v2
“randomlabels” using DeepLabV3+ with ResNet-50.

putation than an N -task MTL model, and is thus not a rep-
resentative baseline. Nonetheless, we present comparisons
with STL in Tab. 11, Tab. 12, and Tab. 13.

Task Performance Tradeoffs In some experiments, JTR
performs marginally lower than MTPSL in one task while
scoring significantly higher in another (Tab. 1, Tab. 3,
Tab. 5). Our understanding is that this is due to the
tradeoff between tasks in MTL (i.e. due to conflicting
gradients [55, 71] and negative transfer [31, 39]). Cru-
cially, JTR’s lowest-scoring tasks are still competitive with
MTPSL, while its highest-scoring tasks significantly out-
perform MTPSL, yielding better overall ∆% performance.

6.4. Ablation Studies

Model-Agnosticism Because JTR is a model-agnostic
method, it can be applied to any dense multi-task predic-
tion architecture. We demonstrate this general agnosticism
by benchmarking “Supervised MTL,” “Consistency Regu-
larization,”, MTPSL [33], and JTR using a DeepLabV3+
model with the ResNet-50 architecture as the backbone.
This study was carried out under the NYU-v2 “randomla-
bels” scenario using a batch size of 4. We present the results
in Tab. 15. In comparison to the earlier SegNet experiments
in Tab. 1, all of the methods perform better; however, the
model trained under JTR still obtains the best performance
in all tasks, as well as the highest ∆% score. These results
showcase the general applicability of JTR regardless of the
model architecture. This setting corresponds to the ResNet-
50 resource usage benchmarks in Tab. 6 in the main paper.

Joint-Task Latent Distance Metric In our experiments,
we primarily used cosine distance (dot product of normal-
ized vectors) as our joint-task latent embedding distance
metric. However, other loss functions such as the L1/L2
distance can also be used as alternatives. We present our
comparisons between L1 norm, L2 norm, and cosine dis-
tance loss functions in Tab. 16. These results show that co-

Function Seg. ↑ Depth ↓ Norm. ↓ ∆% ↑
Supervised MTL 31.87 0.5957 31.64 +0.000
L1 Norm. 35.21 0.5736 33.48 +2.792
L2 Norm. 35.11 0.5608 32.94 +3.972
Cosine Distance 37.08 0.5541 29.44 +10.09

Table 16. Ablation study of loss functions for LDist with NYU-v2
“randomlabels.” All results were obtained with RandAugment.

Dimensions Seg. ↑ Depth ↓ Norm. ↓ ∆% ↑
Supervised MTL 31.87 0.5957 31.64 +0.000
256× 9× 12 35.93 0.5583 29.91 +8.162
512× 9× 12 37.08 0.5541 29.44 +10.09
1024× 9× 12 35.69 0.5641 29.94 +7.555

Table 17. Ablation study of the JTR auto-encoder bottleneck di-
mensions with NYU-v2 “randomlabels.” All results were obtained
with RandAugment.

sine similarity is a favorable distance metric for the joint-
task latent space; hence, we use cosine similarity as LDist
in all of our experiments.

Bottleneck Size The latent dimensions of our SegNet
auto-encoder in JTR are 512×9×12 (the same dimensions
as the MTL model). In Tab. 17, we perform an ablation
study by varying the dimensions of the JTR auto-encoder
bottleneck across (256 × 9 × 12), (512 × 9 × 12), and
(1024×9×12). We find that (512×9×12) is the most effec-
tive bottleneck size. This is consistent with the dimensions
of the SegNet instances used in the MTPSL codebase (for
both the MTL model and the auxiliary modules) [23, 33].

6.5. Additional Resource Usage Comparisons

In Tab. 6, we present training time and VRAM usage com-
parisons for MTPSL [33] and JTR. For completeness, we
also benchmark the “Supervised MTL” and “Consistency
Regularization” baselines in Tab. 18 and Tab. 19. The re-
sults show that both MTPSL and JTR are more resource-
intensive than naı̈ve baselines. However, this tradeoff is
worthwhile given the high prediction performance attained
by the two methods in exchange. Furthermore, comparing
the JTR training time to the supervised baseline on Taskon-
omy, JTR only takes 8 additional hours to train. Meanwhile,
MTPSL takes about 126 additional hours. This shows that
JTR indeed scales more favorably with more tasks.

7. Visualizations
We provide comparisons of model predictions and labels for
examples in the NYU-v2 test set in Fig. 3. Additionally, we
provide visualizations of JTR auto-encoder inputs and re-
constructions for examples in the NYU-v2 “randomlabels”
training set in Fig. 4.

Method SegNet ResNet-50
Time ↓ VRAM ↓ Time ↓ VRAM ↓

Supervised MTL 4h 25m 4GiB 4h 10m 3.5GiB
Consistency Reg. 4h 30m 4GiB 4h 10m 3.5GiB
MTPSL [33] 8h 20m 17.5GiB 17h 40m 21.5GiB
Ours (JTR) 9h 00m 17.5GiB 10h 50m 16.2GiB

Table 18. Time and VRAM requirements for training on NYU-v2
using a fixed batch size of 4 on an NVIDIA A100 for 300 epochs.

Method Cityscapes Taskonomy
Time ↓ VRAM ↓ Time ↓ VRAM ↓

Cityscapes (2 tasks), onelabel, SegNet
Supervised MTL 4h 10m 10.9GiB 97h 00m 9.9GiB
Consistency Reg. 4h 15m 10.9GiB 97h 00m 10.2GiB
MTPSL [33] 22h 10m 14.4GiB 223h 10m 34.4GiB
Ours (JTR) 23h 45m 19.2GiB 105h 00m 23.9GiB

Table 19. Time and VRAM requirements for training on
Cityscapes and Taskonomy using the SegNet architecture on an
NVIDIA A100, with 300 and 20 epochs respectively and batch
sizes 16 and 8 respectively.

Segmentation Depth Normal
Input MTPSL JTR Label MTPSL JTR Label MTPSL JTR Label

Figure 3. Comparison of dense prediction outputs from a SegNet trained with MTPSL and JTR on NYU-v2 “randomlabels” alongside the
corresponding input image and ground-truth labels. Examples are sampled randomly from the test set without cherry-picking. Visually,
the predictions of the JTR model are slightly more accurate than those of the MTPSL model.

Input Segmentation Depth Normal
x ŷx g(Ŷx) yx g(Yx) ŷx g(Ŷx) yx g(Yx) ŷx g(Ŷx) yx g(Yx)

Figure 4. Visualization of input images x, dense prediction outputs ŷ, labels y, JTR reconstructions of the noisy prediction tensor g(Ŷx),
and JTR reconstructions of the reliable target tensor g(Yx) for a SegNet trained with JTR on NYU-v2 “randomlabels.” Examples are
randomly sampled from the training set without cherry-picking. Missing yx entries indicate unlabeled tasks under “randomlabels.”

	Supplementary Material
	. JTR Pseudo-Code
	. Implementation Details
	. Explaining Results
	. Ablation Studies
	. Additional Resource Usage Comparisons

	. Visualizations

