
All Rivers Run to the Sea: Private Learning with Asymmetric Flows

Supplementary Material

8. Proofs of Theorem 1 and Theorem 2
In this appendix, we provide our proofs. We start with the
proof of Theorem 1 in Appendix 8.1. Then, we provide the
proof of Theorem 2 in Appendix 8.2.

8.1. Proof of Theorem 1
We now prove Theorem 1 showing the feasibility of design-
ing a low-dimensional layer.

Theorem 1. For a convolution layer with weight W 2
Rn⇥c⇥k⇥k

with an input X with rank r and output Y with

rank q, there exists an optimal W
(1) 2 Rq⇥c⇥k⇥k,W(2) 2

Rn⇥q⇥1⇥1
in the low-dimensional layer such that the output

of this layer denoted as Y
0

satisfies

���Y � Y
0
��� = 0. (8)

Proof. Given an input tensor X 2 Rc⇥h⇥w with rank r,
W 2 Rn⇥c⇥k⇥k, and output Y 2 Rn⇥h⇥w with rank q, we
can write the convolution Y = W ~ X in a matrix form as

Y = W ·X, (9)

where W 2 Rn⇥ck2

, X 2 Rck2
⇥hw [11, 41, 56]. Similarly

for the low-dimensional convolution layer, we can write its
output Y

0
as follows

Y
0
= W (2) ·W (1) ·X,

where W (2) 2 Rn⇥q and W (1) 2 Rq⇥ck2

.
According to Theorem 2 in [41], the output’s rank is

decided by the rank of X . Therefore, we can decompose X
using SVD as

X = U · V,
where U 2 Rck2

⇥q is a matrix with orthogonal columns,
and V 2 Rq⇥hw is a matrix with orthogonal rows. With
the low-rank decomposition, we can express the difference
between the outputs Y and Y

0
as

Y � Y
0
= W · U · V �W (2) ·W (1) · U · V
= (W · U �W (2) ·W (1) · U) · V.

Let Z = W ·U �W (2) ·W (1) ·U , owing to the low-rank of
the matrix U , the original kernel matrix W is reduced to a
low-dimensional form. Therefore, we can express the kernel
matrix W as follows

W = WU +R, (10)

where WU = W⇥UU⇤ is a low-rank matrix obtained based
on the principal components of U , while R is a residual
matrix based on the principal components that are orthogonal
to U . That is, R · U = 0.
Then the difference Z = W · U �W (2) ·W (1) · U can be
written as follows

Z =
h
(WU +R)�W (2) ·W (1)

i
· U

= (WU �W (2) ·W (1)) · U.

Since Rank (WU )  q, then there is a solution such that

min
W 1,W 2

���WU �W (2) ·W (1)
��� = 0,

where the pair W (1),W (2) is one of the rank-q decomposi-
tions of WU . Hence, minW 1,W 2

���Y � Y
0
��� = 0.

8.2. Proof of Theorem 2

Next, we provide the proof of Theorem 2.

Theorem 2. Delta ensures that the perturbed residuals

and operations in the public environment satisfy (✏, �)-DP

given noise N ⇠ N (0, 2C2 · log (2/�0)/✏0 · I) given sampling

probability p, and ✏ = log (1 + p(e✏
0 � 1)), � = p�0.

Proof. The proof relies on Theorem 6 in [28], the subsam-
pling theorem in [9] (Theorem 9) (replicated in Theorem 3
and 4), and the post-processing rule of DP.

First, we show that the mechanism is (✏, �)-DP if �2 =
2C2 · log (2/�0)/✏0. Since the mechanism of obtaining
IRnoisy is a Gaussian mechanism, and the variance is 2C2 ·
log (2/�0)/✏0, then it follows that the mechanism ensures
(✏, �)-DP by Theorem 3 and Theorem 4.

The residual model Mres in the public environment and
outputs after Mres are the post-processing of IRnoisy. Since
the post-processing does not affect the DP budget [17], any
operation in the public environment has the same privacy
budget as the Gaussian mechanism.

Theorem 3. (Theorem 6 in [28]) Given noise with �2 =
2C2 · log (2/�)/✏, the Gaussian mechanism is (✏, �)-DP.

Theorem 4. (Theorem 9 [9]) Given a randomized mech-

anism M0
with privacy parameter (✏0, �0), and M with

sampling probability p, for any ✏0 > 0, �0 > 0, we have

✏ = log (1 + p(e✏
0 � 1)), and � = p�0.



9. Ablation Study
In this section, we conduct three important ablation studies.
The first one explores merging logits with scaling factor,
whereas the second investigates more perturbation effects
on the overall model performance and finally the third one
investigates the effects of the binary quantization.

9.1. Logits Merging with Scaling
In the main paper, we directly add the logits from Mmain
and Mres to obtain the final prediction (See Figure 1b). In
this appendix, we explore a different way of merging logits.
Specifically, given logits vector from Mmain and Mres: zmain,
zres, we add a scaling coefficient ↵ during merging as

ztot = zmain + ↵ · zres.

The scaling factor controls the weight of Mres’s predic-
tion. Since Mres only contains residual information, its
prediction might conflict with Mmain when residuals contain
little information. With the scaling factor, potential conflicts
between Mmain and Mres can be mitigated.

0.1 0.2 0.4 0.6 1 1.5

92

93

94

A
c
c
(%

)

no DP

✏ = 9

(a) ResNet-18/CIFAR-10

0.1 0.2 0.4 0.6 0.8 1 1.5

70

72

74

76

scaling factor

A
c
c
(%

)

no DP

✏ = 9

(b) ResNet-18/CIFAR-100

Figure 8. Ablation study on merging logits with scaling. Logits merging
with a small ↵ limits the useful information from the residual model, in-
curring accuracy drops. Merging with a large ↵(> 1) also incurs accuracy
drop as Mres can overshadow Mmain in the final prediction.

Figure 8 shows the accuracy versus ↵ for ResNet-18 on
CIFAR-10/100. We next make the following observations.
• With small ↵, there is a noticeable accuracy drop. The

reason is that small ↵ reduces the weight of Mres’s logits,
limiting information from the residual path. As a result,
Mres barely provides performance improvements.

• As ↵ increases, Mres’s prediction weighs more, thereby
boosting the performance of the overall model. We can
also observe that there is a large adjustment space for ↵,
which leads to optimal performance.

• With further large ↵ (↵ > 1), Mres becomes more and
more dominant and dominates the main model’s prediction.
The overall performance again decreases.

Therefore, the weight of Mres’s logits affects the overall
model performance. Delta in the main paper assigns equal
weights for Mmain and Mres (↵ = 1), which strikes an
optimal balance between predictions from those two models.

9.2. More Effects of Perturbation
In this ablation study, we investigate the potential adverse
effects of the perturbed residuals on overall performance.
As we add very large noise on residuals, information in
residuals is significantly perturbed. As a result, the residual
model Mres can cause conflicts with the main model, rather
than provide additional beneficial information for the final
prediction.

Figure 9 shows the accuracy of ResNet-18 on CIFAR-
10/100 with small privacy budgets. With small ✏, the noise
for perturbation is very large, thereby making the residual
model Mres unable to extract useful information from resid-
uals. And it further affects the overall model accuracy. In
particular, the final model accuracy can be even lower than
without Mres (red dashed line in Figure 9). Note that this
ablation study mainly aims to investigate more effects of
perturbation under very small ✏, but such strong privacy con-
straints are usually not considered in real scenarios. Further-
more, even in this case, with very strict privacy constraints,
users can train Mbb and Mmain only. Owing to the effective
asymmetric decomposition, Mbb and Mmain still give rea-
sonable accuracy without incurring prohibitive costs in the
private environment.

0.05 0.3 1 1.4

90

91

9292

M
bb,main

only

A
c
c
(%

)

(a) ResNet-18/CIFAR-10

0.05 0.3 1 1.4

67

71

69.8

M
bb,main

only

✏

A
c
c
(%

)

(b) ResNet-18/CIFAR-100
Figure 9. Effects of large perturbation on overall performance. Mres under
strict privacy constraints can result in an overall accuracy even lower than
without Mres. In this case, users can train Mbb and Mmain only, which
achieves reasonable accuracy owing to the asymmetric decomposition.

9.3. Effects of Binary Quantization
This ablation study analyzes how the binary quantization
affects the final model’s performance. As elaborated in Sec-
tion 4.2, the binary quantization reduces the communication
cost when sending residuals to the public environment.
We train ResNet-18 on CIFAR-10 and CIFAR-100 with and
without binary quantization, and report their results in Table



7. The results show that binary quantization does not signifi-
cantly affect the accuracy of the final model under different
privacy budgets.

10. Experiment for Asymmetric Structure

In this appendix, we provide the experimental details for the
asymmetric structure of the IRs in Section 3.
We train ResNet-18 with ImageNet and the hyperparameters
listed in Table 8. When the training is complete, we analyze
the asymmetric structures in the validation dataset.
Specifically, we extract the intermediate features after the
first convolutional layer in ResNet-18, then use SVD and
DCT to analyze the channel and spatial correlation as in Sec-
tion 3. For DCT, since the feature size after the convolutional
layer is 56⇥ 56, we use 14⇥ 14 block-wise DCT.
We compute the relative error kX�Xlrk

kXk
and kX�Xlfk

kXk
for each

input, and average the ratio across the entire validation
datasets. By varying the number of principal channels in Xlr,
r, and the number of low-frequency components in Xlf, t02,
we obtain the results in Figure 2.

10.1. Asymmetric Structure in Language Models

The asymmetric structure of the intermediate representations
is not only observed in computer vision models but also in
language models. In this appendix, we show the asymmetric
structure of word embedding vectors in language models.

We use Word2Vec [37] and the word embedding layer
in BERT [16] to generate embedding vectors. Figure 10b
shows an example text with 80 words. We feed the text
to Word2Vec and BERT word embedding layer, obtaining
embedding vectors. We group the embedding vectors as a
matrix with each one stored in one row. With the embedding
matrix obtained from Word2Vec and BERT, we respectively
apply SVD to the matrix and compute their singular values,
as shown in Figure 10a. We can easily observe that the de-
cay of the singular values follows an exponential manner
for both Word2Vec and the BERT embedding layer, indicat-
ing high correlations among the embedding vectors. With
the principal vector after SVD, we further use the first 16
principal vectors (1/5 of the total vectors) from Word2Vec
embedding and reconstruct an approximated matrix, where
each row approximates the original embedding vector. Then,
we reconstruct the text using Vec2Word, as shown in Figure
10b. We observe that the approximated text is almost the
same as the original one even with only 1/5 principal vectors
(difference highlighted in bold red).

11. Model and Training Details

In this appendix, we provide the model architectures and the
hyperparameters of the experiments presented in Section 6.

0 20 40 60 80

0

2

4

6

8

Singular value indices

S
in

g
u

la
r

v
a

lu
e

s

BERT

Word2Vec

(a) Singular values in word embedding vectors from BERT and Word2Vec.

Large Language Models are foundational machine learning models

that use deep learning algorithms to process and understand natural

language. These models are trained on massive amounts of text

data to learn patterns and entity relationships in the language. Large

Language Models can perform many types of language tasks, such as

translating languages, analyzing sentiments, chatbot conversations, and

more. They can understand complex textual data, identify entities and

relationships between them, and generate new text that is coherent

and grammatically accurate.

(b) Original text
Large Language Models are foundational machine learning models

that use deep learning algorithms to process and understand natural

language. These models are trained on massive amounts of text

data to learn patterns and entity relationships in the language. Large

Language Models can perform many types of language tasks, such as

translating languages, analyzing sentiments, chatbot conversations, and

more. They can understand complex textual data, identify entities and

relationships between them, and generate new text that are coherent

and grammatically accurate.

(c) approximated text with 1/5 principal vectors from Word2Vec.

Figure 10. Asymmetric structure in language models. Embeddings in
language models also have a highly asymmetric structure. An approximated
text with only 1/5 principal vectors is almost the same as the original.

11.1. Model Architectures
Since the backbone model Mbb and high-dimensional model
Mres combined is just the original model, in this section, we
omit their architecture details and only provide the architec-
ture of Mmain.

Input (rank: r)

Conv

k ⇥ k

Conv

k ⇥ k

+

Output (rank: q)

n kernels

n kernels

(a) Original Resblock(n, k)

Input (rank: r)

Conv

k ⇥ k

Conv 1⇥1

Conv

k ⇥ k

Conv 1⇥1

+

Output (rank: q)

q kernels

n kernels

q kernels

n kernels

(b) Low-dim Resblock(n, k, q)

Figure 11. The original Resblock and low-dimensional Resblock. Non-
linear activation functions and batchnorm are not shown for simplicity.

The original and low-dimensional Resblocks are shown
in Figure 11. The design of the low-dimensional Resblock

follows Figure 4 and Theorem 1.
Table 9 lists the details of model parameters of Mmain



CIFAR10: ✏ = 1.4 ✏ = 1 CIFAR100: ✏ = 1.4 ✏ = 1
With Quantization 92.4± 0.3 93.7± 0.3 71.4± 0.1 74.8± 0.3
No Quantization 92.8± 0.2 94± 0.2 72± 0.4 75.1± 0.2

Table 7. Ablation study w/ and w/o quantization with ResNet-18. This demonstartes that the quantization does not significantly reduce model performance.

Table 8. Hyperparameters in investigating asymmetric structures in CNNs

batch size epochs lr wd momem. lr scheduler

128 100 0.1 1e-4 0.9 cosine anneal

Table 9. Model parameters of Mmain for ResNet-18 and ResNet-34 with
8 principal channels in IRmain.

ResNet-18 ResNet-34
Resblock n k q Resblock n k q

1,2 64 3 16 1-3 64 3 16
3,4 256 3 32 4-9 256 3 32
5,6 512 3 64 10-11 512 3 64

for ResNet-18 and ResNet-34. Given a Resblock with 3⇥ 3
kernels and input rank r, an output with rank 2r is sufficient
to preserve most information in the principal channels [41].
Hence, for ResNet-18 and ResNet-34, we let q = 2r.

11.2. Hyperparameters in the Main Experiments
For the privacy parameters, we set � as 10�6 for all datasets.
Table 10 and 11 list hyperparameters in training ResNet-18
on CIFAR-10/100, and ResNet-18/34 on ImageNet1.

Table 10. Hyperparameters in training ResNet-18 on CIFAR-10/100.

epochs b lr wd orth reg r t/t0

150 64 0.1 2e-4 8e-4 8 16/8
b: batch size, lr: initial learning rate, wd: weight decay.

r: #principal channels in IRmain, t/t0: DCT/IDCT block sizes.
orth reg: kernel orthogonalization regularization.

Table 11. Hyperparameters in training ResNet-18/34 on ImageNet.

epochs b lr wd orth reg r t/t0

100 256 0.1 2e-5 0 12 14/7

12. More Related Works
In addition to the prior privacy-preserving machine learning
works mentioned in the main paper, there are other related
works in the current literature.

Split Learning. Split learning [53, 54, 57] is another
training framework targeting data protection when sharing

1The DCT block size is chosen by trading off DCT computation com-
plexity and the effectiveness of the low-frequency approximation. DCT with
too small blocks does not effectively extract the low-frequency components,
whereas larger block sizes are computationally-intensive.

data with other parties. It splits and distributes a full model
between private clients and untrusted public servers. During
training, the clients learn a few front layers and send inter-
mediate representations (rather than raw inputs) to the server,
relieving computation and memory pressure on clients.

However, even the intermediate representations still con-
tain substantial sensitive information about the raw input
data, which gives way to adversaries who can infer train-
ing data, especially using a model inversion attack (Section
6.3). While split learning can be combined with DP to en-
sure privacy of the intermediate representations as in [54],
unfortunately, this leads to a significant accuracy drop.

Crypto-based Private Learning. Privacy-preserving
machine learning enhanced by crypto techniques provides
strong data protection [22, 31, 32, 51]. These approaches
first encrypt the input data and directly train a model in the
encrypted domain, preventing any untrusted parties from
obtaining raw data. However, the encryption/decryption and
bootstrapping [2] operations add tremendous complexities
during training and inference, limiting their use for large-
scale models. Moreover, as non-linear activation functions
are usually not supported by current encryption schemes, the
crypto based solutions need to approximate these functions,
which inevitably causes performance degradation.

TEE-based Private Learning. Trusted execution en-
vironments (TEEs) provide a secure hardware enclave for
sensitive data, which makes it a practical option for privacy-
preserving machine learning [14, 19, 26, 46, 47]. TEE-based
solutions encapsulate the data and the models in a secure
environment and perform forward and backward passes.
Throughout the whole process, the private information is
always secured in TEEs. Therefore, such solutions achieve
strong privacy protection for both data and the model. One
critical concern of using TEEs for machine learning, how-
ever, is the relatively low computing performance compared
to GPUs. Due to the low parallelism and low communication
efficiency, training/inference time with TEEs differs from
that with GPUs by a factor of about 100 [41]. While the
most advanced GPUs also come with trusted environment
[43], it still remains to see how this can be applied in real
large-scale applications.


