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7. Related Work

7.1. Mitigating Spurious Correlation

It has long been known that deep models trained under
standard ERM settings are vulnerable to spurious correla-
tions [2, 24, 29]. This problem has been addressed in the
literature under terms such as shortcut learning [16, 38] and
simplicity bias [28, 30].
Most well-known works in the literature approach miti-
gating spurious correlation by either group balancing or
sample reweighting. Group DRO [24], which is one of
the best-performing methods proposed so far, uses group
annotations to minimize the worst group error. SUBG [6]
trains a model by ERM on a random group-balanced
subset of data and has proven to be effective on several
benchmarks. Following [6], DFR [8] states that models
trained with ERM are capable of extracting both core
and non-core features of an image and proposes to retrain
only the last layer of the predictor on a group-balanced
subset of training or validation set to make models robust
to spurious correlation. Although these methods have
acceptable performance, they require group labels of the
training or validation set for the training. This assumption
is not feasible in many scenarios and has been addressed
by several methods that aim to train robust models without
access to the group labels. Among these methods, some
introduce methods for reweighting or pseudo-labelling
samples for last layer retraining [10, 20]. AFR[20] up-
weights samples for which a model trained with ERM
assigns a low probability to the correct class. DD-DFR [10]
assigns pseudo group labels to samples based on the
change of the model’s prediction on them when adding
dropout to the model. In addition to this line of work,
[13, 17] introduce methods for fine-tuning whole models
without group knowledge by upweighting or upsampling
the data misclassified by a model trained by ERM. JTT [13]
upsamples datapoints which are misclassified by a model
trained by ERM, with the assumption that these samples
are mostly from under-represented groups.

The methods mentioned above have a common as-
sumption that the misclassified samples or samples with
high loss are mostly from minority groups. While this holds
true for some samples, in many cases, the main reason
behind the model’s high loss on a sample is the complexity
of its causal regions. On the contrary, we manually make
combined images that are theoretically from the minority

groups, as a means for upweighting under-represented
samples.

7.2. Data Augmentation for Bias Mitigation

A line of work uses data augmentation for enhancing
models’ generalizationability [35, 37, 39]. Inspired by
mixup [41], LISA [39] selectively interpolates datapoints
across different groups or different labels to train an
invariant predictor. DISC [35] utilizes a concept bank
to detect spurious concepts and intervenes on samples
using these concepts to balance the spurious attributes.
In addition to these works, few works use synthetic data
augmentation for balancing the training data [7, 21, 22, 34].
GAN debiasing [22] uses a GAN to generate images and
intervene on them in the latent space. FFR [21] combines
synthetic data augmentation and loss-based debiasing
methods (such as Group DRO [24]) for mitigating spurious
correlation.

Almost all the methods based on data augmentation
require the knowledge of the spurious attributes or group
labels, or use additional concept banks or generative models
for detecting and intervening on spurious attributes. DaC
on the other hand, augments the training data with none of
the mentioned requirements.

7.3. Attention-based Masking for Out-of-
Distribution Generalization

Some other works were proposed for removing the irrel-
evant parts of images by masking [11, 43]. CaaM [33]
proposes a causal attention module that generates data
partitions and removes confounders progressively to
enhance models’ generalizability. [36] masks patches of
images based on the class activation map and refills them
from patches of other images and utilizes these samples
for representation distillation with a pretrained model.
Decoupled-Mixup [14] distinguishes discriminative and
noise-prone parts of images and fuses these parts by mixup
separately. MaskTune [3] which is the most similar work
to ours, based on the assumption that models trained with
ERM mostly focus on parts of the image with high spurious
correlation to the label, masks parts of the image with the
highest scores according to xGradCAM. Then a new model
is fine-tuned on the masked data.

None of the methods mentioned above, except Mask-
Tune, strive to extract the causa parts of images in order



to determine the true label of the newly obtained images.
However, a key point in DaC is that it distinguishes the
causal parts from the non-causal regions to be able to make
combined images and determine their label. Additionally,
as discussed in Sec. 3, it cannot be simply assumed that
the focus of models trained with ERM is on non-causal
parts of images, which is the most noticeable downfall of
MaskTune, that we aimed to solve to an extent.

8. Details on Experiments
8.1. Datasets

In this study, We compared methods on four datasets with
distribution shifts. The first three datasets are related to cor-
relation shift and the last one includes diversity shift be-
tween the train and test sets according to the categorization
introduced in [40].
Waterbirds This dataset is created by combining bird pho-
tos from the Caltech-UCSD Birds-200-2011 [31] dataset
with image backgrounds from the Places dataset [44]. The
birds are labelled as either waterbirds or landbirds and are
placed on either water or land backgrounds. Waterbirds are
more frequently shown on water backgrounds, while land-
birds are more often shown on land [24].
CelebA CelebA celebrity face dataset in the presence of
spurious correlations was proposed by [24]. In this dataset
the binary label is assigned to the hair colour and the gender
is the attribute with spurious correlation with the label [15].
Dominoes: This dataset, synthesized in a manner similar
to [18], consists of paired images: one from CIFAR10 and
one from MNIST. The CIFAR10 image, either an automo-
bile or a truck, serves as the target label. Meanwhile, the
MNIST image, a zero or a one, acts as the spurious part.
The spurious correlation between MNIST digits and the la-
bel is 90%.
Metashift: Our setup for Metashift dataset follows [35].
The target is to classify cats and dogs, and spurious features
are objects and backgrounds, namely sofa, bed, bench, and
bike. The test images are from backgrounds that are not
present in the training set.

8.2. Details on the CelebA Dataset

As mentioned in Sec. 5.3, in addition to the spurious corre-
lation between gender (which can be inferred from the facial
features) and hair colour, some hair attributes contribute to
hair volume such as hair wave and baldness, which are cor-
related with the hair colour. The number of people with
each hair colour and specific attributes is extracted from the
CelebA metadata and shown in Tabs. 2 and 3. According
to the statistics, while about 0.05% of blond people wear
hats or are bald, more than 8 per cent of people who are not
blond wear hats or are bald. Similarly, the percentage of
blond people with wavy hair is more than 1.5 times greater

than the ones that are not blond. Additionally, our eye ob-
servations from the dataset indicate that there is a correla-
tion between the length of hair and its colour, as short hair is
more co-occurred with non-blond hair. It is worth mention-
ing that since the attribute of hair length was not available in
the CelebA metadata, we assessed this claim by eye obser-
vation. A few examples of randomly selected samples from
each hair colour are shown in Fig. 14.

Table 2. Number of people with wavy hair with each hair colour.

Blond = -1 Blond = 1
Wavy = -1 121761 16094
Wavy = 1 50855 13889

Table 3. Number of people with each hair colour that are bald or
wear a hat.

Blond = -1 Blond = 1
Bald = -1 ∧ Hat = -1 158440 29817
Bald = 1 ∨ Hat = 1 14176 166

8.3. ERM Training Details

Similar to [8], we used SGD optimizer with learning rate
10−3 and momentum 0.9 for all datasets. We used weight
decay 10−3 for Waterbirds, Metashift and Dominoes dataset
and 10−4 for CelebA. The batch size for CelebA, Water-
birds, Metashift, and Dominoes were 128, 32, 16, and 16
respectively. The model was trained for 100 epochs on the
Waterbirds and Metashift datasets, and for 30 and 15 epochs
on the CelebA and Dominoes.

Table 4. Hyperparameters for DaC

Dataset Hyperparameters

epochs α q

Waterbirds 20 10 0.6
CelebA 15 5 0.2
MetaShift 30 6 0.5
Dominoes 20 6 0.8

8.4. DaC Training Details

For all datasets, Adam optimizer with a learning rate of
0.5 × 10−2, and step learning rate scheduler with step size
5 and gamma 0.5 were used. The batch size was 64 for all
datasets. To encourage the diversity of training data during
retraining the last layer, in cases when the selected samples
with low loss in each batch were only from one class, we
randomly combined the selected images with others from



Table 5. Mean and worst group accuracy on the validation sets of four datasets when applying DaC using the original or inverted masks.

Invert Waterbirds CelebA Metashift Dominoes

Mask Worst Average Worst Average Worst Average Worst Average

✗ 88.4 93.1 84.6 91.2 79 79 19.6 63.1
✓ 22.6 63.2 83.9 90.1 45 60.1 89.2 93.0

the same class. No regularization terms were used for re-
training the last layer of the model. The proportions for
creating the curve of the loss with respect to the amount
of masking in adaptive masking did not contain 1, since
masking the whole image would trivially increase the loss
on the masked image significantly. More details regard-
ing the number of epochs, and optimal values for α and
q are in Tab. 4. Batch size, α and q were selected from
{32, 64}, {1, ..., 10}, and {0.2, 0.4, 0.5, 0.6, 0.8, 1} respec-
tively, and the criteria for hyperparameter selection was the
worst group accuracy on the validation set.

8.5. Original Masks or Inverted Ones?

As mentioned in Sec. 4.2, we train the model in two settings
corresponding to the ERM casual attention and ERM non-
causal attention assumptions. For the former setting, i.e.
ERM casual attention, we keep the parts obtained by adap-
tive masking as the causal parts while for the later one, i.e.
ERM non-causal attention, the parts remained by adaptive
masking are considered as non-causal and thus we invert the
masks in order to obtain the causal regions for DaC. Based
on the worst group accuracy of the model trained by DaC on
the validation set in these two settings, it can be determined
whether the parts to which the model generally pays more
attention are causal or non-causal. The results for both cases
are in Tab. 5. According to the results, unlike the Dominoes,
on Waterbirds and Metashift the model attends more to the
causal components. Regarding the CelebA dataset, it seems
that the attention of the model does not grasp the entire hair
parts in the image, hence, the inverted mask still contains
a proportion of the hair. This was also reflected in the re-
sults in Tab. 1, in which, unlike other datasets, our model
has a lower performance on CelebA. For more details on
the CelebA dataset, refer to Sec. 8.2.

8.6. Details on the Kneedle Algorithm

As mentioned in Sec. 5.2, we use the Kneedle algorithm for
finding the optimal amount of masking in Algorithm 1. This
optimal amount is indicated by the elbow (i.e. the point with
the highest curvature) of the curve of the loss with respect
to the amount of masking. Since we only have access to a
finite number of points from this curve, we use the Kneedle
algorithm, which identifies elbows in a finite set of points
from a curve.

The Kneedle method is based on the concept that knee
points approximate the local maxima when the set of points
is rotated about a specific line. This line is determined by
the first and last points and is chosen to preserve the over-
all behaviour of the set. By rotating the curve about this
line, knee/elbow points are identified as the points where
the curve deviates most from the straight line segment con-
necting the set’s endpoints. This approximation effectively
captures the points of maximum curvature for the discrete
set of points. The algorithm works as follows:
1. Smoothing: it applies a smoothing spline or other

smoothing methods to data.
2. Normalization: It normalizes smoothed data by min-max

normalization to function well regardless of the magni-
tude of data values.

3. Difference Computation: It defines Dd as the set of dif-
ferences between x- and y- values. The knee is where
the difference curve changes from horizontal to sharply
decreasing.

4. Local Maxima Calculation: It identifies the local max-
ima of the difference curve as candidate knee points.

5. Threshold Calculation: For each local maximum
(xlmxi

, ylmxi
) in the difference curve it defines the

Tlmxi
which is based on the average difference between

consecutive x values in the difference curve and a sen-
sitivity parameter, S. This parameter determines how
aggressive the method is. Smaller values for S, detect
knees quicker, and large values are more conservative.

Tlmxi = ylmxi − S.
∑n−1

i=1 xi+1−xi

n−1

6. Knee Declaration: If any difference value (xi, yi), where
j > i, drops below the threshold y = Tlmxi

before the
next local maximum in the difference curve is reached,
the method declares that local maximum as a knee point.
Kneedle’s run time for any given n pairs of x− and y−
values is bounded by O(n2).

8.7. Training Time

Since the ERM model used for computing the attribution
scores of the pixels is fixed, extracting the attention heatmap
and adaptive masking is done as a preprocess. Hence, dur-
ing training, the previously prepared and saved masks are
used, similar to MaskTune [3]. Additionally, since the op-
timal percentage of the masked pixels in Adaptive Masking



is selected among a small number of candidates, the time
complexity of FindElbow is constant. The training time of
several methods (excluding the ERM phase of the methods)
on Waterbirds is shown in Tab. 6.

Table 6. The training time of different methods (excluding the
ERM training phase) on the Waterbirds dataset on Nvidia A100
GPU

Method DFR CnC JTT MaskTune Ours

Time (min) 4 85 58 6.5 18.9

9. More Empirical Observations
In Sec. 3, we claimed that the images on which the model
trained with ERM has a low loss show specific properties.
This assumption is valid since on the images from the ma-
jority groups both the causal and non-causal parts of images
are in accordance with the label. Hence, even if the model
attends more to the non-causal parts or its attention is di-
vided between the causal and non-causal parts, it will still
perform well on the datapoint and obtains a low loss. Fig. 6a
illustrates that the images from minority groups are more
among the images with high losses. On the other hand, im-
ages from majority groups are almost uniformly distributed
between loss quantiles, with a slightly higher probability in
lower loss quantiles, as shown in Fig. 6b. Since the proba-
bility of majority samples is higher than the minority ones
across the dataset and p(low loss|majority) is high, it can
be concluded that the probability of a low loss sample be-
ing from the majority groups is relatively high.

10. Comparison of Attribution Maps
The class activation maps of models trained with ERM and
our method on some samples are illustrated in Figs. 7 to 10.

11. Combined Images
Some examples of combined images and their correspond-
ing label are shown in Figs. 11 to 13.
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Figure 6. (a) Distribution of training images from minority groups
between loss quantiles for the Waterbirds and Dominoes datasets.
(b) Distribution of training images from majority groups between
loss quantiles for the Waterbirds and Dominoes datasets.

Image ERM Ours

Figure 7. Saliency maps of models trained with ERM and our
proposed method on CelebA samples which are misclassified by
the base model trained with ERM.



Image ERM Ours

Figure 8. Saliency maps of models trained with ERM and our
proposed method on Waterbirds samples which are misclassified
by the base model trained with ERM.

Image ERM Ours

Figure 9. Saliency maps of models trained with ERM and our
proposed method on Metashift samples which are misclassified by
the base model trained with ERM.

Image ERM Ours

Figure 10. Saliency maps of models trained with ERM and our
proposed method on Dominoes samples which are misclassified
by the base model trained with ERM.
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Figure 11. Low loss training samples in the Waterbirds and their
combinations.
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Figure 12. Low loss training samples in the Metashift and their
combinations.
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Figure 13. Low loss training samples in the Dominoes and their
combinations.



Blond = -1 Blond = 1

Figure 14. Some samples from the CelebA dataset.
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[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. Invariant risk minimization. ArXiv,
abs/1907.02893, 2020. 1, 3

[3] Saeid Asgari, Aliasghar Khani, Fereshte Khani, Ali
Gholami, Linh Tran, Ali Mahdavi-Amiri, and Ghassan
Hamarneh. Masktune: Mitigating spurious correlations by
forcing to explore. In Advances in Neural Information Pro-
cessing Systems, 2022. 2, 4, 6, 7, 1, 3

[4] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition
in terra incognita. In Computer Vision – ECCV 2018: 15th
European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XVI, page 472–489, Berlin, Heidel-
berg, 2018. Springer-Verlag. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 6

[6] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki,
and David Lopez-Paz. Simple data balancing achieves com-
petitive worst-group-accuracy. In Proceedings of the First
Conference on Causal Learning and Reasoning, pages 336–
351. PMLR, 2022. 1, 3

[7] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap:
Removing dataset bias with bias-tailored swapping augmen-
tation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 14992–15001,
2021. 1

[8] P. Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson.
Last layer re-training is sufficient for robustness to spurious
correlations. ArXiv, abs/2204.02937, 2022. 1, 3, 5, 6, 7, 2

[9] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen,
Amy Zhang, Jonathan Binas, Dinghuai Zhang, Remi Le
Priol, and Aaron Courville. Out-of-distribution general-
ization via risk extrapolation (rex). In Proceedings of the
38th International Conference on Machine Learning, pages
5815–5826. PMLR, 2021. 1

[10] Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar.
Dropout disagreement: A recipe for group robustness with
fewer annotations. In NeurIPS 2022 Workshop on Distribu-
tion Shifts: Connecting Methods and Applications, 2022. 1

[11] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and
Yun Fu. Tell me where to look: Guided attention inference
network. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9215–9223, 2018. 1

[12] Weixin Liang and James Zou. Metashift: A dataset of
datasets for evaluating contextual distribution shifts and
training conflicts. In International Conference on Learning
Representations, 2022. 7

[13] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghu-
nathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and
Chelsea Finn. Just train twice: Improving group robustness
without training group information. In Proceedings of the

38th International Conference on Machine Learning, pages
6781–6792. PMLR, 2021. 1, 6, 7

[14] Haozhe Liu, Wentian Zhang, Jinheng Xie, Haoqian Wu,
Bing Li, Ziqi Zhang, Yuexiang Li, Yawen Huang, Bernard
Ghanem, and Yefeng Zheng. Decoupled mixup for general-
ized visual recognition, 2022. 1

[15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In 2015 IEEE In-
ternational Conference on Computer Vision (ICCV), pages
3730–3738, 2015. 7, 2

[16] Nihal Murali, Aahlad Manas Puli, Ke Yu, Rajesh Ranganath,
and kayhan Batmanghelich. Shortcut learning through the
lens of early training dynamics, 2023. 1

[17] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and
Jinwoo Shin. Learning from failure: Training debiased clas-
sifier from biased classifier. In Proceedings of the 34th Inter-
national Conference on Neural Information Processing Sys-
tems, Red Hook, NY, USA, 2020. Curran Associates Inc. 1

[18] Matteo Pagliardini, Martin Jaggi, François Fleuret, and
Sai Praneeth Karimireddy. Agree to disagree: Diversity
through disagreement for better transferability. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 4, 7, 2

[19] Judea Pearl. Causality. Cambridge University Press, Cam-
bridge, UK, 2 edition, 2009. 3, 5

[20] Shikai Qiu, Andres Potapczynski, Pavel Izmailov, and An-
drew Gordon Wilson. Simple and fast group robustness by
automatic feature reweighting. ICML 2023. 1

[21] Maan Qraitem, Kate Saenko, and Bryan A. Plummer. From
fake to real: Pretraining on balanced synthetic images to pre-
vent bias. ArXiv, abs/2308.04553, 2023. 2, 1

[22] Vikram V. Ramaswamy, Sunnie S. Y. Kim, and Olga Rus-
sakovsky. Fair attribute classification through latent space
de-biasing. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021,
pages 9301–9310. Computer Vision Foundation / IEEE,
2021. 1

[23] Alexandre Rame, Corentin Dancette, and Matthieu Cord.
Fishr: Invariant gradient variances for out-of-distribution
generalization. In Proceedings of the 39th International
Conference on Machine Learning, pages 18347–18377.
PMLR, 2022. 1

[24] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto,
and Percy Liang. Distributionally robust neural networks.
In International Conference on Learning Representations,
2020. 1, 3, 6, 7, 2

[25] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and
Percy Liang. An investigation of why overparameteriza-
tion exacerbates spurious correlations. In Proceedings of the
37th International Conference on Machine Learning, pages
8346–8356. PMLR, 2020. 1

[26] Ville A. Satopaa, Jeannie R. Albrecht, David E. Irwin, and
Barath Raghavan. Finding a ”kneedle” in a haystack: Detect-
ing knee points in system behavior. 2011 31st International
Conference on Distributed Computing Systems Workshops,
pages 166–171, 2011. 7



[27] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 618–626,
2017. 4

[28] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek
Jain, and Praneeth Netrapalli. The pitfalls of simplicity bias
in neural networks. Advances in Neural Information Pro-
cessing Systems, 33, 2020. 1

[29] Antonio Torralba and Alexei A. Efros. Unbiased look at
dataset bias. In CVPR 2011, pages 1521–1528, 2011. 1

[30] Puja Trivedi, Danai Koutra, and Jayaraman J. Thiagarajan. A
closer look at model adaptation using feature distortion and
simplicity bias. In The Eleventh International Conference on
Learning Representations, 2023. 1

[31] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The caltech-ucsd birds-200-2011 dataset. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011.
2

[32] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding,
P. Mardziel, and X. Hu. Score-cam: Score-weighted vi-
sual explanations for convolutional neural networks. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 111–119, Los
Alamitos, CA, USA, 2020. IEEE Computer Society. 4

[33] Tan Wang, Chang Zhou, Qianru Sun, and Hanwang Zhang.
Causal attention for unbiased visual recognition. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 3091–3100, 2021. 1

[34] Xinyue Wang, Yilin Lyu, and Liping Jing. Deep generative
model for robust imbalance classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1

[35] Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James
Zou. Discover and cure: Concept-aware mitigation of spuri-
ous correlation. arXiv preprint arXiv:2305.00650, 2023. 2,
7, 1

[36] Yao Xiao, Ziyi Tang, Pengxu Wei, Cong Liu, and Liang Lin.
Masked images are counterfactual samples for robust fine-
tuning. 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 20301–20310, 2023. 2,
1

[37] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie
Wang, Qi Tian, and Wenjun Zhang. Adversarial domain
adaptation with domain mixup. Proceedings of the AAAI
Conference on Artificial Intelligence, 34:6502–6509, 2020.
1

[38] Wanqian Yang, Polina Kirichenko, Micah Goldblum, and
Andrew G Wilson. Chroma-vae: Mitigating shortcut learn-
ing with generative classifiers. In Advances in Neural In-
formation Processing Systems, pages 20351–20365. Curran
Associates, Inc., 2022. 1

[39] Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang,
James Zou, and Chelsea Finn. Improving out-of-distribution
robustness via selective augmentation. In International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022,

Baltimore, Maryland, USA, pages 25407–25437. PMLR,
2022. 6, 7, 1

[40] Nanyang Ye, Kaican Li, Haoyue Bai, Runpeng Yu, Lanqing
Hong, Fengwei Zhou, Zhenguo Li, and Jun Zhu. Ood-bench:
Quantifying and understanding two dimensions of out-of-
distribution generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7947–7958, 2022. 2

[41] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 1

[42] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang,
Chelsea Finn, and Christopher Re. Correct-n-contrast: a con-
trastive approach for improving robustness to spurious corre-
lations. In Proceedings of the 39th International Conference
on Machine Learning, pages 26484–26516. PMLR, 2022. 6

[43] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learn-
ing multi-attention convolutional neural network for fine-
grained image recognition. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 5219–5227,
2017. 1

[44] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2017. 2


