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Supplementary Material

1. Overview
In this document, we provide the following additional ma-
terial:
• More elaborate implementation details (see Sec. 2).
• Additional experimental results (see Sec. 3).

• Comparisons with existing work for a range of token
reduction settings, to evaluate the trade-off between ef-
ficiency and segmentation quality (see Sec. 3.1).

• Additional comparisons with existing token reduction
methods (see Sec. 3.2 and Sec. 3.3).

• An analysis of the effect of different similarity thresh-
olds for more datasets (see Sec. 3.4).

• An analysis of obtaining ALGM* on different segmen-
tation models (see Sec. 3.5).

• Additional ablations (see Sec. 3.6).
• Qualitative results (see Sec. 4).

2. Implementation details
For our main experiments, we implement ALGM on top of
the publicly available code of Segmenter1 [17], SETR2 [22],
SegViT3 [20], and EVA4 [9]. For Segmenter, SETR, and
SegViT, we ensure a fair comparison by training all net-
works using the original hyperparameters and official im-
plementations. When training models with ViT-T/S/B back-
bones, we utilize 2 Nvidia A100 GPUs, and for ViT-L,
we use 4 Nvidia A100 GPUs. When training EVA [9],
which comprises 40 transformer layers and 1.0B parame-
ters, a batch size of 32 necessitates 32 GPUs with 40GB
VRAM. Given our compute limitations, instead, we fine-
tune this model using 4 Nvidia A6000 GPUs with a batch
size of 8 for an additional 10k iterations.

GBM module position. Tab. 1 lists the positions of the
CLAP and GBM modules in different segmentation net-
works. As can be seen, the CLAP module is always ap-
plied in layer 1 only. To determine the layer where the
GBM module should be applied, we implement GBM in
several layers on a pre-trained segmentation model with-
out fine-tuning or re-training, and find where it yields the
best results. Specifically, we select the earliest layer for
which the baseline mIoU is maintained, since (a) our ob-
jective is to maintain the segmentation quality, and (b) the

1https://github.com/rstrudel/segmenter
2https://github.com/fudan-zvg/SETR
3https://github.com/zbwxp/SegVit
4https://github.com/baaivision/EVA/tree/master/EVA-

01/seg

Network Backbones CLAP Layer GBM Layers

Segmenter [17] ViT-T/S/B 1 5
Segmenter [17] ViT-L 1 7
SegViT [20] ViT-L 1 12
SETR [22] ViT-B 1 5
SETR [22] ViT-L 1 13
EVA [9] ViT-G 1 11, 21, 31

Table 1. CLAP and GBM module positions in transformer-based
semantic segmentation networks Segmenter [17], SegViT [20],
SETR [22], and EVA [9].

potential efficiency gain is higher if GBM is applied ear-
lier, since more layers will process a reduced set of tokens.
This approach aligns with strategies followed in existing
works [3, 10, 11, 13, 19]. For EVA [9], we apply the GBM
module in more than one layer, which is further discussed in
Sec. 3.6. The similarity threshold τ is calculated automati-
cally for all models, given the strategy explained in Sec. 3.3
of the main manuscript.

Adaptive token merging. Our method adaptively deter-
mines the number of merged tokens for each image us-
ing the similarity threshold τ . As a result, each image
in the training and validation sets has a different number
of remaining tokens N ′ and N ′′. This variability intro-
duces challenges in batch processing. To solve this during
training, ALGM is adaptive on a batch level by using the
largest value of N ′ or N ′′ in the batch. In simpler terms,
it merges the same number of tokens for each image in a
batch, and this number is the minimum number of merge-
able tokens across all images in a batch. This ensures that
token reduction is guided by the most complex image in the
batch, retaining essential details and eliminating the need
for padding. During inference, with a batch size of 1, which
is common in real-world situations, ALGM is adaptive per
image.

Throughput evaluation. As mentioned in the previous
section, the adaptive nature of our method results in a dif-
ferent number of remaining tokens N ′ and N ′′ for each im-
age in the validation set. This variability complicates batch
processing, which we use for stable throughput evaluation
following existing work [14]. Specifically, if we would pad
the sets of tokens, or use the largest N ′ or N ′′ in the batch
like during training, this would give an incorrect image of
the obtainable throughput. To solve this, and still allow for
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batched evaluation, we use batches of 32 duplicates of the
same image, so that the number of reduced tokens is equal
throughout the batch. We apply this to each image, and cal-
culate the average throughput over the entire validation set.
To ensure a fair comparison, we apply the same approach to
evaluate the throughput of existing work. The image crop
size used for these calculations is the same that is used dur-
ing training.

3. Additional results
3.1. Comparison with existing work across token

reduction settings

In Sec. 5.1 of the main manuscript, we present our main re-
sults in which, for different existing token reduction meth-
ods, we report the version that achieves the highest effi-
ciency while still maintaining the segmentation quality as
much as possible. For a more comprehensive comparison,
we compare our ALGM with these existing methods across
a range of different token reduction settings, essentially
evaluating the trade-off between efficiency and segmenta-
tion quality. For methods ELViT [11], EViT [12], ToMe [1],
and ACT [21], we follow the different token reduction set-
tings specified by Liang et al. [11]. For AiluRus [10], we
report their results across three token reduction settings.
For our method, ALGM, we present the results for vari-
ous similarity threshold values during inference. The results
for these experiments are provided in Fig. 1 for ADE20K,
Cityscapes and Pascal-Context.

On the ADE20K and Pascal-Context datasets, our
ALGM consistently outperforms other methods and
achieves a better balance between mIoU and computational
efficiency. On the ADE20K dataset, ALGM achieves a
mIoU of 51.9, slightly surpassing the baseline, while oper-
ating with a 45% reduction in GFLOPs. When compared to
its closest competitor, AiluRus [10], our method achieves
the same segmentation quality with 14% fewer GFLOPs.
On the other datasets, ALGM also achieves a considerably
better balance between the mIoU and GFLOPs than existing
works. The only exception is CTS [14] on the Cityscapes
dataset. As explained in Sec. 5.1 of the main manuscript,
this is due to the visual homogeneity of the images of this
dataset.

3.2. Comparison with DToP on Pascal-Context

As mentioned in Sec. 5.1 of the main manuscript, the per-
formance of SETR [22] without token reduction as reported
by DToP [18] does not align with the results we obtain from
the official code of SETR. Additionally, DToP has not made
its code publicly available. As a result, we can only com-
pare to this method in terms of the relative performance dif-
ferences resulting from token reduction. In addition to the
results presented in the main manuscript, Tab. 2 compares
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Figure 1. Comparison with state-of-the-art methods. All meth-
ods are applied to Segmenter [17] with ViT-L [8]. We com-
pare ALGM to AiluRus [10], CTS [14], ELViT [11], ToMe [1],
EViT [12], and ACT [21] across different token reduction settings.

ALGM to DToP on the Pascal-Context dataset [15]. For
SETR-B, we observe that ALGM achieves a better segmen-
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No token reduction With token reduction

mIoU↑ GFLOPs↓ mIoU↑ GFLOPs↓
SETR-B + DToP [18] 58.1 92 58.2 (+0.1) 69 (-25%)
SETR-B + ALGM (ours) 52.2 92 52.7 (+0.5) 69 (-25%)
SETR-B + ALGM* (ours) 52.2 92 52.3 (+0.1) 59 (-36%)

SegViT-L + DToP [18] 63.0 315 62.7 (-0.3) 224 (-29%)
SegViT-L + ALGM (ours) 64.1 334 64.2 (+0.1) 259 (-22%)
SegViT-L + ALGM* (ours) 64.1 334 64.1 (+0.0) 237 (-29%)

Table 2. ALGM vs. DToP [18] on Pascal-Context [15], applied
to SETR [22], and SegViT [20]. ALGM* is the same trained
model as ALGM, but uses the threshold τ during inference that
achieves the best efficiency while maintaining the mIoU w.r.t. the
baseline.

Method mIoU (%)↑ ∆ mIoU↑ ∆ Im/sec

Seg-S [17] 45.3 - -

+ PAUMER [7] 40.7 -4.6 +50%
+ PAUMER [7] 34.6 -10.7 +100%
+ ALGM (ours) 45.4 +0.1 +50%
+ ALGM (ours) 43.4 -1.9 +100%

Table 3. ALGM vs. PAUMER [7]. All models are applied
to Segmenter (Seg) [17] with ViT-S [8] and evaluated on the
ADE20K [23] validation set; ∆ indicates differences.

tation quality improvement with the same efficiency. More-
over, ALGM* can achieve a much better efficiency while
obtaining the same segmentation quality improvement as
DToP. Applied to SegViT-L [20], we find that ALGM* can
maintain the mIoU while achieving the same efficiency im-
provement that DToP obtains while that method causes a
mIoU drop. Again, these comparisons highlight that ALGM
achieves a better trade-off between segmentation quality
and efficiency.

3.3. Comparison with PAUMER

When comparing our method to PAUMER [7], we observe
similar challenges as for DToP [18], so we can only com-
pare in terms of relative throughput changes. Tab. 3 presents
a comparative analysis between ALGM and PAUMER
when applied to Segmenter [17] on the ADE20K validation
set. The results show that, at equal throughput improve-
ments, ALGM achieves significantly better mIoU scores.
The difference is especially notable when the throughput is
increased by +100%, where PAUMER causes a mIoU drop
of -10.7 but ALGM can limit the decrease to -1.9.

3.4. Different similarity thresholds

In Sec. 5.4 of the main manuscript, we explore the impact of
different similarity thresholds τ on the model’s performance
on ADE20K. Here, we conduct these experiments also for
other datasets. Fig. 2 shows the results for the Cityscapes,
COCO-Stuff and Pascal-Context datasets. For all datasets,
it is clear that automatic thresholds offer a good balance be-
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(b) COCO-Stuff validation [2].
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Figure 2. Different similarity thresholds for token merg-
ing during training and inference. ALGM is applied to Seg-
menter [17] with ViT-S [8]. ALGM* is the same trained model as
ALGM, but uses the threshold τ during inference that achieves the
best efficiency while maintaining the mIoU w.r.t. the baseline.

tween efficiency and segmentation quality. Similar to the
findings for the ADE20K dataset, we observe that employ-
ing a lower threshold during training leads to a significant
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Figure 3. Obtaining ALGM*. ALGM is applied to Segmenter [17] and SETR [22] with various backbones (ViT-T, ViT-S, ViT-B and
ViT-L) [8] on the ADE20K [23], COCO-Stuff [2] and Pascal-Context [15] validation sets. These figures show the values of thresholds τ
used during inference for the ALGM and ALGM* versions. ALGM* is the same trained model as ALGM, but uses the threshold τ during
inference that achieves the best efficiency while maintaining the mIoU w.r.t. the baseline.

decrease in mIoU. However, using a lower threshold during
inference results in a more modest decline in mIoU while
notably improving efficiency. These findings enable a valu-
able strategy, where we train ALGM with the automatic
threshold, but can reduce the threshold τ during inference
to improve the efficiency with minimal impact on the mIoU.
This how we obtain ALGM*. This also demonstrates the
versatility of our method, as it is suitable for various appli-
cations with different demands for efficiency and accuracy.

Notably, the automatically calculated threshold τ for the
Cityscapes dataset is relatively high compared to the thresh-
olds obtained for other datasets. This observation aligns
with our results in Sec. 5.1 of the main manuscript, where
we explained that the visual homogeneity of Cityscapes im-
ages causes tokens to have high cosine similarities in the
first transformer layer, even when they do not depict the
same category. This necessitates a higher merging thresh-

old, consequently limiting the potential for efficiency im-
provement.

3.5. Obtaining ALGM*

In our main experiments, we present two versions of our
method: (1) ALGM, which consistently applies an auto-
matic threshold during both training and inference, and (2)
ALGM*, which is the same trained model as ALGM but
uses the lowest possible threshold τ during inference for
which the mIoU remains above the baseline. This ALGM*
version is designed to optimize efficiency while maintaining
the segmentation quality. To illustrate the process of obtain-
ing ALGM*, Fig. 3 shows the results of ALGM with differ-
ent thresholds during inference, and compares this with the
baseline mIoU performance without token reduction.
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Layer mIoU (%)↑ Im/sec↑ GFLOPs↓
Baseline 45.3 134 38.6

5 & 7 45.4 214 23.1
5 46.4 192 26.3

(a) Multiple GBM modules.

Position mIoU (%)↑ Im/sec↑ GFLOPs↓
Baseline 45.3 134 38.6

After MLP 46.0 187 26.9
Betw. MHSA & MLP 46.4 192 26.3

(b) Merging module placement.

Merging method mIoU (%)↑ Im/sec↑ GFLOPs↓
Baseline 45.3 134 38.6

Pick random token 45.0 193 26.1
Take average 46.4 192 26.3

(c) Token merging operation.

Layer mIoU (%)↑ Im/sec↑ GFLOPs↓
Baseline 45.3 134 38.6

+ ALGM (Direct) 45.3 193 26.2
+ ALGM (Fine-tuning) 45.7 192 26.3
+ ALGM (Training) 46.4 192 26.3

(d) Effect of training.

Layer mIoU (%)↑ Im/sec↑ GFLOPs↓
Baseline 45.3 134 38.6

1 46.4 192 26.3
2 46.4 176 28.5
3 46.3 168 29.8

(e) CLAP module position.

Feature mIoU (%)↑ Im/sec↑ GFLOPs↓
Baseline 45.3 134 38.6

K (Key) 45.9 200 25.5
Q (Query) 45.9 200 25.5
V (Value) 46.0 192 26.1
T (Token) 46.4 192 26.3

(f) Feature selection.

Table 4. Ablations. We evaluate different settings for ALGM. We apply ALGM to Segmenter [17] with ViT-S [8] and evaluate on the
ADE20K validation set [23]. MHSA = Multi-head self-attention.

Method Layers mIoU (%)↑ Im/sec↑ GFLOPs↓
EVA [9] - 61.5 1.9 4080

+ ALGM‡ 11, 21, 31 61.5 2.4 3538
+ ALGM‡ 11, 21 61.4 2.1 3722
+ ALGM‡ 11 61.4 2 3872

Table 5. Multiple GBM modules in EVA. ALGM is applied to
SOTA method EVA + ViT-Adapter + Mask2Former [4, 5, 9] and
evaluated on the ADE20K validation set, with single-scale testing.
‡Directly applied to the backbone without fine-tuning.

3.6. Additional ablations

Multiple GBM modules. In Tab. 4a, we examine the ef-
fect of applying the GBM module in more than one layer.
The results indicate that while the application of the GBM
module in both the 5th and 7th layer significantly increases
throughput, it also results in a noticeable reduction in mIoU
compared to its sole application in the 5th layer. This im-
plies that overly aggressive global token merging using the
GBM module negatively impacts segmentation quality.

For EVA [9], which is a much larger model with 40 trans-
former layers, we conduct a similar experiment in Tab. 5.
Here, we find that applying the GBM module multiple times
does not cause a drop in mIoU. We hypothesize that a very
large model like EVA introduces considerable additional re-
dundancies in its many layers, which GBM can then reduce
without harming the segmentation quality. However, further
research is required to explore this in more detail.

Merging module placement. We conduct an ablation
to identify the optimal location for the merging modules
within a transformer layer. As shown in Tab. 4b, placing
them between the multi-head self-attention (MHSA) block
and the MLP yields the best performance in terms of both
the segmentation quality and the efficiency.

Token merging operation. Tab. 4c compares the perfor-
mance of different token merging operations. Pick random

token represents the operation where a single random token
is picked from each set of tokens that can be merged, and
is used to replace these tokens. This approach results in
the loss of important information because the selected to-
ken might not be the best representation of the collective set
of tokens. On the other hand, taking the average of all to-
kens in each set yields a much better performance. It causes
the merged token to be better representative of the origi-
nal tokens, because it consolidates the information from all
tokens in the set. Moreover, it can denoise these token em-
beddings, as discussed in Sec. 5.4 of the main manuscript.

Effect of training. Since our method introduces no addi-
tional learnable parameters, ALGM can easily be integrated
with off-the-shelf pre-trained ViT-based networks to run in-
ference directly while reducing tokens. To assess the impact
of training the models after module integration, we explore
three scenarios: (a) directly applying the module during in-
ference without any additional training, (b) fine-tuning the
model for an additional 16 epochs, resuming training from
the model pre-trained on the ADE20K dataset, and (c) train-
ing the model for 64 epochs, starting from the model pre-
trained on the ImageNet dataset [16]. These are situations
that have been evaluated before in earlier work [18]. The
results of these approaches are presented in Tab. 4d. We
observe that applying ALGM improves efficiency across all
scenarios. While direct integration maintains the baseline
mIoU, further training, particularly training from scratch,
significantly improves the segmentation quality. As we dis-
cuss in Sec. 5.4 of the main manuscript, these results indi-
cate that training the model with the ALGM module lever-
ages the benefits of attention balancing and token denoising
during training, leading to improvements in segmentation
quality.

For further insights into the effect of training, we also
compare ALGM against ELViT [11], ToMe [1], and Ail-
uRus [10], which are explicitly designed for direct appli-
cation without additional training. As shown in Tab. 6,
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Method mIoU (%)↑ Im/sec↑ GFLOPs↓
Seg-L 51.8 10 672

+ ALGM (Direct) 51.8 16 436
+ ELViT [11] (Direct) 51.9 12 539
+ AiluRus [10] (Direct) 52.2 - 479
+ ToMe [1] (Direct) 51.7 14 505

+ ALGM (Training) 52.7 16 438
+ ELViT [11] (Training) 51.4 12 539
+ ToMe [1] (Training) 51.6 14 505

+ AiluRus [10] (Fine-tuning) 52.1 - -

Table 6. Effect of training with ALGM and existing work. All
methods are applied to Segmenter (Seg) [17] with ViT-L [8] and
evaluated on ADE20K [23]. We evaluate three settings. (1) Direct:
direct application without further training. (2) Training: training
the model from scratch for 160k iterations. (3) Fine-tuning: re-
suming training from a pre-trained model for 160k iterations.

although ALGM is primarily designed for training from
scratch, it still achieves competitive mIoU results without
training, while being more efficient. Furthermore, we ob-
serve that training these existing training-free methods does
not cause them to perform better than when applied directly.
This shows that training a network with token reduction
methods does not automatically give a mIoU boost, and that
it is the design of our approach that enables this.

CLAP module position. In this experiment, we investi-
gate the impact of applying the CLAP module in different
transformer layers. We keep the GBM module at the 5th

layer. The findings, as outlined in Tab. 4e, show that to-
ken embeddings in the first layer are sufficiently represen-
tative of class correspondence for effective local merging.
Delaying the application of CLAP to the second or third
layers does not significantly impact the mIoU, but it does
negatively affect the efficiency. Thus, applying the CLAP
module in the first layer achieves the optimal balance of ef-
ficiency and accuracy.

Feature selection. As mentioned in the main manuscript,
our approach utilizes the cosine similarity of token embed-
dings T to identify tokens for merging. Here, we examine
the effect of using cosine similarity of other features – i.e.,
keys, queries, and values – to determine which tokens can
be merged. Table 4f shows the results. Although using keys
or queries results in the highest throughput, using the tokens
T yields a considerably higher mIoU and a throughput that
is close to the throughput obtained by using keys or queries.
This differs from the findings for ToMe [1], where the keys
are identified as the best option to identify mergeable to-
kens for the image classification task. We hypothesize that
this can be attributed to the fact that all token embeddings
are directly used to make the final semantic segmentation

prediction, whereas image classification networks only use
a single CLS token for the final class prediction [8]. This
gives the tokens a more important role for semantic seg-
mentation, making them the most appropriate feature to use
for token reduction.

4. Qualitative results
4.1. Merging operations

In Fig. 4, Fig. 5, Fig. 6, and Fig. 7, we show qualitative
examples of the effect of CLAP local merging and GBM
global merging. The similarity map displays the average co-
sine similarity between tokens within a 2×2 local window,
which is used to determine which tokens can be merged in
the CLAP module. These figures demonstrate that for all
datasets, CLAP predominantly merges tokens with a high
visual similarity. On the other hand, GBM also merges to-
kens that depict the same category but have lower visual
similarity, after acquiring more informative embeddings in
the middle network layers. Notably, from row 3 and 4 in
Fig. 7, depicting Cityscapes examples, it becomes clear that
the high visual homogeneity of Cityscapes images causes
tokens to have high cosine similarities also if they do not
depict the same class. As mentioned in Sec. 5.1 of the main
manuscript and Sec. 3.1 of this document, this high aver-
age cosine similarity causes the automatic threshold τ to
be quite high, limiting the efficiency improvement of the
ALGM method on this dataset.

4.2. Semantic segmentation predictions

In Fig. 8 and Fig. 9, we show examples of semantic seg-
mentation predictions by Segmenter [17] with ViT-S [8],
both with and without our ALGM.
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(a) Input image (b) Local token similarities (c) Local merging (d) Global merging

Figure 4. Qualitative results on ADE20K [23]. This figure displays (a) the input image, (b) the average cosine similarities between tokens
in 2×2 local windows in the first transformer layer, (c) the merged tokens after CLAP local merging, (d) the merged tokens after GBM
global merging.
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(a) Input image (b) Local token similarities (c) Local merging (d) Global merging

Figure 5. Qualitative results on COCO-Stuff [2]. This figure displays (a) the input image, (b) the average cosine similarities between
tokens in 2×2 local windows in the first transformer layer, (c) the merged tokens after CLAP local merging, (d) the merged tokens after
GBM global merging.
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(a) Input image (b) Local token similarities (c) Local merging (d) Global merging

Figure 6. Qualitative results on Pascal-Context [15]. This figure displays (a) the input image, (b) the average cosine similarities between
tokens in 2×2 local windows in the first transformer layer, (c) the merged tokens after CLAP local merging, (d) the merged tokens after
GBM global merging.
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(a) Input image (b) Local token similarities (c) Local merging (d) Global merging

Figure 7. Qualitative results on Cityscapes [6]. This figure displays (a) the input image, (b) the average cosine similarities between
tokens in 2×2 local windows in the first transformer layer, (c) the merged tokens after CLAP local merging, (d) the merged tokens after
GBM global merging.
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(a) Input image (b) Token merging (c) Baseline (d) With ALGM (ours) (e) Ground truth

Figure 8. Examples of predictions by Segmenter with ViT-S and ALGM on ADE20K [23].
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(a) Input image (b) Token merging (c) Baseline (d) With ALGM (ours) (e) Ground truth

Figure 9. Examples of predictions by Segmenter with ViT-S and ALGM on Pascal-Context [15].
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