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1. Architecture details
Herein, we provide the architecture details of our approach when using both the MViTv2-S [6] and ViT-B [8] as backbones.
Please refer to [6], [8] and to https://github.com/IoannaNti/BMViT for full implementation details.
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(a) Our pipeline with MViTv2-S as bockobone.
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(b) Our pipeline with ViT-B-S as backobone.

Figure 1. 1a The network architecture resembles that of MViTv2-S [6], with the pooling layer after scale4 removed. The output features are
projected to 512 dimensions and forwarded to three parallel heads that predict for each token the bounding box coordinates, the probability
of the bounding box being an actor, and the class predictions. 1b The network architecture resembles that of ViT-B [6]. The output tokens
corresponding to t = ⌊T/2⌋ are forwarded to two parallel heads that predict for each token the bounding box coordinates and the probability
of the bounding box being an actor. For the class prediction, we apply cross-attention between all output tokens of shape 8× 18× 18 and
the ones corresponding to the central frame. The attended tokens are then passed through an MLP for class predictions.

2. Per-class analysis
In Fig. 2 we present the performance per-category of our single-stage model built on MViTv2-S [6] and the corresponding
two-stage approach of the same MViT on AVAv2.2 [4]. To compute the per-class accuracy, we re-trained the backbone using
the same settings as in [6], obtaining 27.05 mAP, which is indeed +0.2 w.r.t. the reported results. Our approach demonstrates
improvements in 44 out of the 60 categories, notably increasing in categories like ‘drive (e.g., a car, a truck)’ with an impressive
+23.1 mAP increase and ‘turn (e.g., a screwdriver)’ with a significant +12.8 mAP boost. Intriguingly, the performance trends
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Method Pretraining mAP GFLOPs Res. Backbone End-to-end
VideoMAE [8] K400, VideoMAE 31.8 180+246 224 ViT-B ✗
VideoMAE [8] K400, VideoMAE 37.0 597+246 224 ViT-L ✗

UMT [5] K400, UMT 32.7 180+246 224 ViT-B ✗

UMT [5] K400, UMT 39.0 596+246 224 ViT-L ✗

Hiera-L [7] K400, MAE 39.8 413+246 224 Hiera-L ✗

TubeR [10] K400, IG65M [2] 29.2 97 256 CSN-50 ✓

TubeR [10] K400, IG65M [2] 33.4 138 256 CSN-152 ✓

EVAD [1] K400, VideoMAE 32.3 243 288 ViT-B ✓

STMixer [9] K400, VideoMAE 32.6 N/A 256 ViT-B ✓

Ours K400, MAE 38.5 650 256 Hiera-L ✓

Table 1. Comparison w.r.t. state-of-the-art (mean Average Precision; mAP ↑) on AVA v2.2 [3]. “Res.” denotes frame resolution.

across categories remain consistent between our method and the two-stage MViT, suggesting the feasibility of employing the
same representation for both actor localization and action detection tasks.

3. Additional results
Larger backbones As mentioned in the main document, we trained our method using a Hiera-L backbone. The results of our
method against large-scale state-of-the-art methods are shown in Tab. 1. We observe that while our method falls short w.r.t. the
two-stage counterpart, our simple, single-stage approach delivers competitive results.
Additional bounding boxes In Eq. (3) in the main document, the training objective considers the bounding box error w.r.t.
only the annotated bounding boxes. We want to note that because we distinguish between an actor and a person, the bounding
box loss could be also backpropagated w.r.t. bounding boxes corresponding to no-actors, if available. This could improve the
precision of the detections and as such the overall performance. We conducted an experiment to study the impact of such
approach, observing no effect (neither positive nor negative), in the results. We attribute this to the fact that the number of
bounding boxes that correspond to a no-actor on AVA 2.2. is rather small compared to those of the annotated actors.

4. Visual analysis
In Fig. 3 we show three visual examples complementing those presented in Fig. 3 in the main paper. In these examples, we
also show the attention maps for each of the tokens that are chosen to represent an actor with p(α) > θ. We can see that
the attention maps show how each token is indeed tracking the actor for which they carry the corresponding information,
illustrating how our approach can enable the visual tokens to carry bounding box information regarding the central frame, as
well as the class information that requires spatio-temporal reasoning.

Figure 2. Per-category AP for Our single stage action detection method (30.0 mAP) and MViTv2-S (27.0 mAP) on AVA v.2. On top of the
bar there is the difference per-class where categories with increased accuracy are marked in green and those decreased with our method in
red.



Figure 3. Qualitative analysis (better seen in color and zoomed in). We provide three qualitative examples from three corresponding
validation videos from AVA2.2. On the left top image we represent the confidence scores p(α) for the actor-no actor prediction, for each
of the 16 × 16 output tokens corresponding to one of the central frames. Those with high confidence p(α) > θ are selected as positive
examples, and their corresponding bounding boxes and class predictions will then form the final outputs. The images in the left bottom are
the bounding boxes predicted by each of the same 16× 16 output tokens, with those in yellow corresponding to the positive tokens (i.e. to
the final output bounding boxes). On the right we represent the last layer’s attention maps corresponding to each of the selected tokens in
the left, i.e. their attention scores w.r.t. the whole 8× 16× 16 spatio-temporal tokens. We observe that the confident tokens not only attend
to the central information to produce the bounding box, but also track the corresponding actor across the video to estimate the corresponding
actions. In the second example, we only represent three actors for the sake of clarity. We observe that even with a change of scene, the
attention maps can properly track each actor’s information. In the last example, the self-attention maps show how they can track each actor’s
despite the self-occlusion. These examples show that our method can track the actor’s information and regress the bounding boxes with a
Vision Transformer that assigns each vision token a different output, which are assigned to the ground-truth set through bipartite matching.
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