
Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion

Supplementary Material

This supplementary material provides further detailed

information on our proposed approach. We provide de-

tailed information on the used network architectures, and

ablations over the different hyperparameters of the gener-

ation process, i.e., conditioning weight s and regulariza-

tion weight r. Appendix A provides detailed information

about the noise predictor and refinement network architec-

tures and more detailed information about the refinement

network training. Appendix B gives further ablations over

the noise predictor regularization weight r. Appendix C

presents qualitative and quantitative comparisons between

the scene completion with different conditioning weights s

and the unconditional generation, i.e., s = 0.0. Appendix D

compares qualitatively the scene completion with different

number of denoising steps. Finally, Appendix E shows

further qualitative results comparing our scene completion

with the evaluated baselines. Furthermore, we provide our

code within this supplementary material, which we will

make publicly available upon acceptance of the paper.

A. Architectures

This section shows the model architectures for the noise

predictor and the refinement network with further details

on the training procedure. Appendix A.1 shows the dia-

gram of the noise predictor model together with the condi-

tion encoder and how the noise prediction is conditioned to

it. Appendix A.2 presents the refinement upsample network

architecture and provides further details on the refinement

network training.

A.1. Noise predictor

As the noise predictor, we used a MinkUNet [1] to pre-

dict the noise over each point. For the condition encoder,

we used only the encoder part of the MinkUNet with the

same architecture as the noise predictor. As described in

Sec. 3.6 of the main paper, before each layer l, we compute

the positional embeddings τ from the denoising step t with

an embedding dimension dt = 96, conditioning the layer

input Fl to C and t with the conditioning block. Fig. 1 de-

picts the noise predictor and condition encoder architecture,

with each layer l features dimension dl and the conditioning

scheme.

A.2. Refinement upsample network

As the refinement network, we have used the same architec-

ture as the noise predictor with a tanh activation as the final

layer, as depicted in Fig. 2. Given that the refinement net-

work has to predict just an offset around the diffusion gen-

eration, we use a tanh layer to limit the offset size, avoiding

the model predicting too large offsets.

As mentioned in Sec. 3.5 of the main paper, we used

the refinement and upsample scheme proposed by Lyu et

al. [5]. We train the refinement model using Adam [2] opti-

mizer, with a learning rate of 10−4 and decay of 10−4, with

a batch size equal to 8, training for 5 epochs. To generate

the refinement ground truth, we aggregate 20 scans before

and 20 scans after each scan in the training set, using the

relative poses between the scans. We use these aggregated

scans as the ground truth Ogt, and as the input, we copy Ogt

and add random point jittering to each point, defining the

input O. Then, the model is trained to predict 3 × κ val-

ues for each point, corresponding to κ offsets. We add the

κ offsets to each point in O, getting the upsampled refined

prediction O′, and supervise it with the symmetric chamfer

distance loss Lrefine as:

LCD (A,B) =
1

| A |

∑

a∈A

min
b∈B

∥a− b∥2
2
, (1)

Lrefine = LCD(Ogt,O
′) + LCD(O

′,Ogt). (2)

With Eq. (2), we train the refinement model to predict κ

offsets to the input O such that the upsampled refined pre-

diction O′ gets as close as possible to the ground truth. With

this refinement model, we can generate the scene comple-

tion with our diffusion model with fewer denoising steps

using the DPMSolver [4] and refine it. As mentioned in

Sec. 3.5 of the main paper, with fewer denoising steps, the

generation quality may decrease. Therefore, with this re-

finement network, we can compensate for this lower gen-

eration quality while also upsampling our generated scene

completion.

B. Regularization ablation

This section compares the results of the noise predictor

trained with different regularization weights r. Fig. 3 com-

pares the scene completion with the noise predictor trained

with different regularization weights. With r = 0.0, the

model can generate structural information with a noisy as-

pect, and, in this example, the points from the two parked

cars are mixed together without a clear boundary. With

r = 1.0, a less noisy scene completion is generated, but

still, the surfaces in the structure present a noisy aspect.

When comparing r = 3.0 and r = 5.0, both generated

scene depicts a more detailed and less noisy scene, com-

pared with lower regularization weights r. However, using

r = 5.0 achieves more fine-grained structural details. The

surfaces in the scene appear to have a flatter aspect, and the
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Figure 1. Noise predictor and condition encoder models architecture. The condition encoder receives the scan P and computes the

conditioning point cloud C. From t, we compute the positional embedding τ with a dimension dt = 96. At each layer l, we give C and τ

to the conditioning block together with the layer input features Fl to get F ′

l , which is then feed as input to the layer l.

Refinement network
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Figure 2. Refinement network architecture.

sidewalk curbs seem better defined. Also, the two parked

cars retain more details, e.g., the windows space. Given this

analysis and the quantitative results present in Tab. 5 of the

main paper, we use r = 5.0 in the main experiments.



Figure 3. Comparison between results with different regularization weights r.

s 0.0 2.0 4.0 6.0 10.0 12.0 16.0

CD [m] 0.737 0.543 0.454 0.433 0.432 0.435 0.450

Table 1. Mean chamfer distance over a short sequence from

the validation set of SemanticKITTI with different conditioning

weights s.

C. Condition weights ablation

This section compares the scene completion quality us-

ing different condition weights s qualitatively and quanti-

tatively. Fig. 4 shows the qualitative comparison between

the scene completion with different conditioning weights.

With s = 0.0, we have the unconditional generation. In

this case, the generated scene has a flat surface distributed

over the input scan borders without retaining structural in-

formation. As we increase s, the structure details are better

defined. With s = 2.0 and s = 4.0 more details are gener-

ated but with a smooth aspect. With s = 6.0 the generation

follows structural information from the input scan and de-

fines sharper boundaries over the structures. With s = 10.0
and s = 12.0, the generated scene gets too noisy, generating

artifacts over the scene.

We also evaluate the influence of the conditioning

weight s in Tab. 1. As in Tab. 5 of the main paper, we com-

pute the chamfer distance over the scene completion and the

ground truth over a short sequence from the SemanticKITTI

validation set, where we generate every one hundred scans.

In this evaluation, having s = 6.0 and s = 10.0 achieves

basically the same performance. However, from the quali-

tative evaluation presented in Fig. 4, we used s = 6.0 in the

main paper since it achieved the best performance visually

and numerically.

D. Denoising steps

In this section, we compare the quality of the scene com-

pletion with different number of denoising steps T . Fig. 5

shows the diffusion generation using DPMSolver [4] with

the different number of denoising steps and the amount of

time in seconds to generate the complete scene. Since the

model was trained with T = 1, 000, we can achieve the

best quality result when using T = 1, 000 during infer-

ence. However, inferring the 1, 000 steps demands many

computational time. As we decrease T , we increase the in-

ference speed. However, we can also notice that with lower

T , the scene generation loses details. This can be seen when

comparing the structures in the scene, especially the ground,

where more noise can be noticed as we decrease T . There-

fore, in the main paper we set T = 50 and take advantage of

the refinement network to compensate for the lower quality

generation when using smaller T .

E. Further qualitative results

In this section, we show more qualitative results, comparing

our scene completion with the baselines evaluated in the pa-

per, i.e., LMSCNet [6], PVD [8], Make It Dense (MID) [7],

and LODE [3]. Figs. 6 to 10 compare the results between

the baselines and our method. As shown, the diffusion base-

line PVD [8] fails to generate scene-scale data. The SDF

baselines reconstruct the scene inheriting artifacts from the

surface approximation and the voxelization. Our method

achieves a more detailed representation, with a smoother

generation compared to the baselines.
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Figure 4. Comparison between results with different conditioning weights s.
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Figure 5. Comparison between results with different number of denoising steps T .
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Figure 6. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 7. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 8. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 9. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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Figure 10. Qualitative results comparing the scene completion between our method and the baselines evaluated in the main paper.
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