
READ: Retrieval-Enhanced Asymmetric Diffusion for Motion Planning

Supplementary Material

Takeru Oba†, Matthew Walter‡, Norimichi Ukita†
† Toyota Technological Institute, ‡ Toyota Technological Institute at Chicago

sd21502@toyota-ti.ac.jp, mwalter@ttic.edu, ukita@toyota-ti.ac.jp

6. Task details
Figure 11 visualizes demonstration sequences from the 16
tasks, which we describe below. Unless specified otherwise,
objects are randomly placed on the table.
Pick up Cup (PC) This task involves grasping and lifting
a red cup placed on the table. In addition to the red cup,
there is a distractor cup of various colors placed randomly.
The prediction is labeled as a failure if the robot grasps the
distractor cup. Since the red cup is always picked in demon-
strations, motion planning models learn that the red cup is
the target.
Reach Target (RT) The task involves directing the robot
end-effector to reach a red sphere placed in the workspace.
Unlike other tasks, the target (red sphere) is suspended in
the air and does not make contact with the table. In addition
to the red sphere, two randomly colored spheres are also
placed at random locations, and the challenge is to ignore
these distractors while precisely reaching the red target.
Push Button (PB) The task is to press a button placed on
the table.
Open Wine (OW) The task involves removing the cap of a
vertical wine bottle placed on the table.
Close Box (CB) The task is to close an open box placed on
the table.
Put Rubbish (PR) The task is to dispose of rubbish by
putting it into a trash bin. In addition to the rubbish, two
tomatoes are placed on the table as distractors, requiring
the successful identification and disposal of only the rub-
bish while ignoring the tomatoes.
Stack Wine (SW) The task is to lay a wine bottle on its
side on a rack. The positions of racks and bottles are ran-
dom, while where the bottles should be placed on the racks
is fixed across episodes. If the bottle is not placed in the
predetermined position, it is labeled a failure.
Place Hunger (PH) The task involves hanging hangers on
a rack. The hangers are randomly positioned, while the lo-
cation of the rack is fixed across episodes.
Water Plants (WP) The task involves using a watering can
to provide water to a plant. The watering can is already
filled with water.
Beat the Buzz (BB) In this task, the robot needs to move a
wand with a ring from one end of a pole to the other without
making contact.
Put Knife (PK) The task involves removing a knife from a

container and placing it on a cutting board. To extract the
knife, it is necessary to pull it directly upward.
Take Plate (TP) The task is to take a plate from a container
and place it on top of a blue cube.
Straighten Rope (SR) The task involves straightening a
rope bent in an S-shape.
Put Umbrella (PU) The task is to grab the handle of an
umbrella placed on top of a container and put the umbrella
into the container.
Scoop with Spatula (SS) The task is to place a square cube
on top of a spatula. Rather than gripping and directly plac-
ing the cube onto the spatula, the challenge involves grab-
bing the spatula, smoothly maneuvering it under the cube,
and scooping the cube with momentum.
Stack Blocks (SB) The task is to stack any two out of four
randomly placed red cubes onto a marked spot in the center
of the table. In addition to the red cubes, cubes of random
colors are placed as distractors, but stacking these distrac-
tors will not lead to task success.

7. Implementation details
In this section, we provide the details of the baseline meth-
ods that we compare to (i.e., Deterministic, VPSDE, and
VPSDE+CG). Note we provide implementations of these
methods in the code that we make available at https:
//github.com/Obat2343/READ. Unless specified
otherwise, we use the Adam optimizer and optimize the
models until the training loss converges.
Deterministic: Figure 12(a) shows the architecture of the
Deterministic baseline. Given an RGB-D image I , the
network generates a feature map using an encoder with a
Resnet18 backbone. To accommodate the four channels
of the RGB-D image, we modify the input channel size of
the first layer of Resnet18. It then feeds a flattened image
feature map into a two-layer perception with the Gelu acti-
vation function to predict the motion M̂(0). We train this
model to minimize the mean square error (MSE) between
the predicted M̂(0) and ground-truth M(0) motions. Note
that we train the model from scratch.
VPSDE: Our implementation of VPSDE adapts that of
Song et al. [50], which is designed for image synthesis
tasks, to perform motion planning. Figure 12(b) shows the
model architecture of VPSDE that we implemented. We
adopt the same architecture as READ. EncI is ConvNext-



Figure 11. Demonstration sequences for the 16 different tasks. The red dashed line encloses tasks included in Avg12.

based UNet [27, 44]. Encp,Enct and Dece are three-layer
perceptrons with a Gelu activation function [17]. Encf is a
multi-head transformer encoder [54]. PE denotes sinusoidal
positional encoding [54]. While READ predicts the motion
M(0) directly, VPSDE predicts the noise ϵθ(I,M(t), t)
from I , M(t), and t, where M(t) is the perturbed motion at
diffusion step t obtained by forward SDE. While READ ob-
tains M(t) by a latent-space forward SDE, VPSDE obtains

M(t) by the following a different forward SDE:

dx = −1

2
βtxdt+

√
βtdw, (6)

where x = M in our scenario. We linearly schedule βt from
1.0 to 20.0. VPSDE is trained to minimize the following
MSE loss:

L = ∥ϵ− ϵθ(I,M(t), t)∥. (7)

VPSDE+CG: We apply Classifier-free Guidance (CG) to
VPSDE for a retrieval-based diffusion model baseline. Fig-
ure 12(b) shows the model architecture of VPSDE+CG. The



Resnet18

Flatten

(a) Model architecture for the Deterministic baseline.

Extractor ‥
‥

PE

+

+

+

‥‥

+

+

‥+ +

(b) Model architecture for the VPSDE baseline.

‥

Extractor ‥
‥

PE

+

+

+

‥‥

+

+

+ +

‥+‥

+

(c) Model architecture of VPSDE+CG.

Figure 12. Baseline model architectures.

model architecture is almost the same as the VPSDE except
that the retrieved motion MR is additionally conditioned.
MR is embedded by the pose encoder Encp that is shared
with M(t) and the embedded feature is fed into Encf (i.e.,
a transformer). During inference, VPSDE+CG predicts the
noise as follows:

ϵ̂ = wϵθ(I,M(t),MR, t)− (w − 1)ϵθ(I,M(t), t). (8)

The parameter w controls the strength of guidance. The
unconditional term ϵθ(I,M(t), t) is implemented just by
masking the condition MR. To strongly guide the reverse
process by MR, we set w = 1.0 We train the model by
minimizing the following MSE loss:

L = ∥ϵ− ϵθ(I,M(t),MR, t)∥. (9)

To learn the unconditional prediction, we stochastically
mask MR with a masking probability of 10%. Forward
SDE and βt are the same as VPSDE.

8. Full tables and figures
In the main paper, we only provide Avg12 and Avg16 in
Tables 2(a), 2(b), 2(c), and 3 due to the page limitation.
In this section, we provide the full version of the tables.
Talbes 4, 5, 6, and 7 corresponding to Tables 2(a), 2(b), 2(c),
and 3, respectively. Moreover, we additionally provide

Cheat (i = 3) and Cheat (i = 10) in Table 5. These re-
sults show the success rates when the ith nearest neighbor
to the ground-truth motion is executed without refinement.
Note that Cheat (i = 1) in Table 5 is the same as Cheat in
Table 2(b).

The READ (i = 1) in Table 4 represents the performance
when the motion retrieved by Cheat (i = 1) is refined. The
success rates of Cheat (i = 1) are shown in Table 5. Across
most tasks, READ (i = 1) outperforms Cheat (i = 1), with
a notable increase in success rates, particularly in the cases
of OW and PK. Figure 13 visualizes how READ refines the
retrieved motion over iterations. Visualizations of OW and
PK in Fig. 13 show that motions, which initially deviate
from the ground-truth (GT) motion, gradually converge to-
wards their GT motion. Thanks to the robust refinement
ability of READ, the predictive motion succeeds even when
the retrieved motion is far from the GT motion. A com-
parison between READ (i = 10) and Cheat (i = 10) fur-
ther demonstrates the effectiveness of READ. In the case
of i = 10, READ (i = 10) improves Avg12 and Avg16 by
more than 40% compared to Cheat (i = 10), reinforcing our
conclusion that READ is robust to retrieval failure.

9. Robustness to poor retrieval

Here, we evaluate the performance of READ when retrieved
motions are far from correct motions. In additional exper-
iments with i=500-th nearest motion (i.e., poor retrieval)
shown in Table 8, Avg12=1.3, which is too low, if the re-
trieved motion is used without refinement. The retrieved
motion is far from the correct one. With one-step refine-
ment (N=1), READ improves performance to Avg12=47.5,
and with further refinement (N=100), to Avg12=88.0, com-
parable to READ’s Avg12=88.8 in Table 1.

10. Realistic scenarios

We evaluated the success rates when adding random noise
and changes in overall brightness to the test images. For
images corrupted by noise and brightness changes, Avg12
is 88.5 and 87.8 as shown in Table 9, respectively, which
are comparable to READ in Table 1.

11. Limitations and future work

We found limitations of our method through experiments
in difficult tasks in the Avg16 tasks. In the SR (straighten
rope) task, a challenge arises from the configuration space.
To grasp the rope, the robot’s arms must be extended to their
near maximum limit, making it difficult to find an appropri-
ate pose due to reaching the limits of the robot’s range of
motion. To address this issue, it may be possible to com-
bine our latent space implicit kinematics constraints with
explicit constraints.



Table 4. Refinement.

i Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

READ 1 70.4 88.6 97 100 73 87 100 97 98 42 94 89 86 100 21 38 0 4
READ-O 1 61.4 78.3 95 98 84 79 100 97 91 48 57 31 65 95 2 37 3 3
READ-L 1 33.6 44.8 65 2 49 47 85 65 34 20 31 35 32 72 1 0 0 0

READ 3 70.6 89.3 97 100 75 88 100 96 98 55 89 88 86 100 19 35 3 2
READ-O 3 61.1 78.8 95 97 88 81 98 100 91 44 57 31 64 99 3 27 2 1
READ-L 3 34.1 45.3 65 4 56 44 87 61 34 19 34 41 32 67 0 1 0 0

READ 10 71.0 89.8 97 100 75 90 99 97 98 55 92 88 86 100 19 36 2 3
READ-O 10 60.1 77.3 95 98 86 82 100 95 91 41 60 25 58 97 3 23 3 4
READ-L 10 34.9 46.5 81 4 60 37 85 69 37 19 34 40 29 63 0 0 0 0

Table 5. Retrieval.

Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

Cheat (i=1) 60.6 79.5 85 96 96 57 86 99 85 42 87 76 51 94 1 13 0 1
Cheat (i=3) 48.7 64.1 67 81 83 35 71 92 70 30 86 38 36 80 0 7 2 1
Cheat (i=10) 30.7 40.4 56 21 47 17 64 58 50 9 72 16 19 56 0 2 3 1
READ 56.6 73.5 73 89 86 37 97 97 77 37 91 73 34 91 0 19 3 1
READ-O 57.1 75.5 95 82 100 70 93 98 80 31 79 48 37 93 0 5 0 2
READ-L 52.4 68.9 92 11 100 46 99 100 79 29 80 69 30 92 0 9 1 2

In the PU task, which involves placing an umbrella into
an umbrella stand, a problem arises from even slight de-
viations in the angle of holding the umbrella causing sig-
nificant changes in the position of its tip. Incorporating a
mechanism to provide feedback on the grasped result could
allow fine adjustments to the grasping position.

In the SS task, where a cube is scooped with a spatula,
requiring deliberate and forceful sliding motion, the impor-
tance of force control for future work is emphasized, as
most planning methods, including ours, currently predict
only the trajectory.

In the SB task, the original motions consisted of approx-
imately 350 to 400 frames, which have been aligned to 100
frames through interpolation. This interpolation results in
the loss of crucial frame information (e.g., grasping frame).
To mitigate this issue, it would be intriguing to explore the
incorporation of dynamic prediction length models [12, 34]
or keyframe-based motion planning techniques [40, 47] to
prevent such information loss.



Table 6. EM vs. CD with READ-O

Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

w/EM 60.1 78.5 85 96 96 57 86 99 85 42 87 76 51 94 1 13 0 1
w/CD 58.8 77.4 94 75 49 73 81 97 98 50 89 66 66 91 0 9 3 2

Table 7. Success rates of READ with different hyperparameters.

Setting N K L T Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

A 100 3 0.5 2.0 70.2 88.8 96 99 72 88 100 98 97 57 91 86 82 100 16 36 4 1

B 10 3 0.5 2.0 69.9 88.0 96 99 76 88 100 93 99 50 91 83 83 98 20 34 4 4
C 1 3 0.5 2.0 68.8 87.0 97 98 54 91 100 97 100 52 88 90 78 100 18 37 1 0

D 100 10 0.5 2.0 67.1 85.9 98 97 64 86 99 97 99 31 90 90 80 100 3 37 3 0
E 100 1 0.5 2.0 67.1 85.5 97 97 64 87 100 95 98 35 93 90 71 99 7 35 2 5

F 100 3 1.0 2.0 68.9 87.4 98 81 85 89 99 97 100 40 95 97 69 99 4 47 2 0
G 100 3 0.1 2.0 59.5 76.6 86 71 66 67 100 94 95 47 92 68 38 95 6 17 2 8

H 100 3 0.5 20.0 65.4 84.3 96 95 62 89 100 95 100 31 91 94 60 98 5 28 2 0
I 100 3 0.5 0.1 67.4 85.9 95 95 68 95 100 92 100 38 92 82 75 99 6 32 1 8

Table 8. Refinement from poor retrieval.

i N Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

READ 500 0 1.0 1.3 0 2 0 0 4 0 1 0 3 5 0 1 0 0 0 0
READ 500 1 36.4 47.5 75 73 32 38 55 43 80 15 66 24 36 33 0 13 0 0
READ 500 100 69.2 88.0 95 99 77 85 100 96 97 55 89 80 83 100 17 27 5 2

Table 9. Planning from perturbed images.

type Avg16 Avg12 PC RT PB OW CB PR SW PH WP BB PK TP SR PU SS SB

READ noise 69.3 88.5 96 99 74 90 100 95 99 51 86 89 83 100 15 29 1 1
READ brightness 69.9 87.8 94 98 79 88 100 97 99 40 91 87 81 100 19 37 7 2



26

PC

RT

PB

OW

CB

SW

PR

PH

WP

BB

PK

TP

Figure 13. Visualization of motion refinement by READ.


