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7. Source code and datasets
7.1. Source code
The source code and basic instructions are available on https://github.com/molden/atomlenz

7.2. Datasets
Several datasets were used in this work and all are available.

7.2.1 Hand-drawn images dataset

The dataset introduced by Brinkhaus et al. [4], which consists of hand-drawn chemical depictions matched with their cor-
responding SMILES representations, is partitioned into 4,070 samples for training and validation purposes, along with an
additional 1,018 samples for testing. These sets are referred to as the hand-drawn training set and the hand-drawn test set

and available here: https://dx.doi.org/10.6084/m9.figshare.24599412
The hand-drawn training set was then relabeled using EditKT* to annotate corresponding bounding box labels for 1417

images (see Experiments Section 5.3). The format of the bounding box labels are further explained in Section 7.2.2. The
dataset is available here: https://dx.doi.org/10.6084/m9.figshare.24599172

To streamline the process, the hand-drawn training set is offered in different formats together with instructions to assist in
training other baseline models (see Experiments Section 5.3). When applicable, localization annotations are also included.
The different datasets are available here:
• DECIMER format: https://dx.doi.org/10.6084/m9.figshare.24591252
• Img2Mol format https://dx.doi.org/10.6084/m9.figshare.24591381
• MolScribe format https://dx.doi.org/10.6084/m9.figshare.24591300
• ChemGrapher format https://dx.doi.org/10.6084/m9.figshare.24591495

7.2.2 Synthetically generated dataset

For the pretraining of the object detection models of AtomLenz, we generate images synthetically using RdKit [1] and
Indigo [22] paired with bounding boxes delineating all objects within, including atoms, bonds, charges, and stereocenters,
similarly to what is used in other chemical structure recognition tools [19, 23]. Specifically, we collect approximately 214,000
chemical compounds in SMILES format from the ChEMBL [8] database. To enhance the method’s resilience to stylistic
variations, we introduce variability in elements such as fonts, font sizes, line widths, and the spacing between multiple bonds
during image generation. Dataset is available in 2 parts:
• part 1 atom and bond entity annotated images: https://zenodo.org/records/10185264
• part 2 charge and stereocenter entity annotated images: https://zenodo.org/records/10200185

Example label file:

label,xmin,ymin,xmax,ymax
0,267,522,286,541
2,317,489,336,508
0,313,429,332,448
0,363,396,382,415
2,360,337,379,356
0,306,310,325,329
2,256,343,275,362
0,370,516,389,535
0,374,576,393,595
0,428,603,447,622



2,478,570,497,589
0,474,510,493,529
2,524,477,543,496
0,578,504,597,523
0,628,471,647,490
0,682,498,701,517
0,732,465,751,484
0,728,405,747,424
0,675,378,694,397
6,431,663,450,682
3,581,564,600,583
6,671,318,690,337
0,260,403,279,422
0,421,483,440,502
0,625,411,644,430

Above an example csv label file is illustrated of the bounding box labels for one image. There are several fields in the csv
file:
• label field will annotate for every bounding box in the image what class the atom,bond,charge or stereo center the entity

belongs to. For atom-type entities these are the different possible labels:

{0: ’C’, 1: ’H’, 2: ’N’, 3: ’O’, 4: ’S’, 5: ’F’, 6: ’Cl’,
7: ’Br’, 8: ’I’, 9: ’Se’, 10: ’P’, 11: ’B’, 12: ’Si’,
13: ’*’, 14:’Te’, 15:’Sn’, 16: ’As’, 17:’Al’, 18:’Ge’,
19:’D’, 20:’T’}

For bond-type entities the different possible labels are:

{1: ’single’, 2: ’double’, 3: ’triple’,
4: ’aromatic’, 5: ’wedged’, 6: ’dashed’}

For charge-type entities the different possible labels are:

{0: 0, 1: +1, 2: -1, 3: +2, 4: -2, 5: +3, 6: +4, 7: +5, 8: +6}

Finally for stereocenters entities:

{0:’stereocenter’}

• xmin,ymin: coordinates of top left corner of the bounding box.
• xmax,ymax: coordinates of the bottom right corner of the bounding box.

Examples of samples from the synthetically generated training set are illustrated in Figure 10 together with the drawn
bounding box labels for the different object types. Also some extra examples of samples of all test sets described in Section 4
are illustrated in Figure 5.



Illustrations datasets samples

(a) Hand-drawn test set (b) Chempix test set.

(c) Atom localization test set, labeled with
bounding boxes, here illustrated with differ-
ent color for every atom type.

Figure 5. Different example samples for the different datasets used in experiments.

(a) progesterone (chemical formula C21H30O2). (b) �9-tetrahydrocannabinol (chemical formula C21H30O2).

Figure 6. Constitutional isomerism between two unrelated compounds.

8. Illustrations of isomers
In all imperfect representation levels there are compounds that cannot be distinguished. These undistinguishable groups
correspond to the concept of isomerism in chemistry. In the level of molecular formula where only the count of different
atoms are given, these equivalent compounds called constitutional isomers. Compound graphs with identical adjacency
matrix but different spatial organization are called stereoisomers. In the following we give examples to help clarify these
concepts.

8.1. Constitutional isomerism

Constitutional isomerism is a quite simple concept. It is clear that if we specify the number of atoms for all type, multiple
possible compound graphs can be built. There are valence constraints of course, for example a CnH2n+2 compound cannot
contain double or triple bonds. However, there is still a large variety of graphs that can be realized.

The case of sucrose and lactose (see Figure 7) is easy to follow as the galactose and fructose unit only different in the
position of the ring closure. A more accidental case is progesterone and THC depicted on Figure 6. This starkly illustrates
the pitfalls of using the chemical formula as a representation. The effects of these two compounds are clearly unrelated.



(a) Depiction of lactose (chemical formula C12H22O11). (b) Depiction of sucrose (chemical formula C12H22O11).

Figure 7. Constitutional isomerism between two compounds from the same family (disacharides).

(a) Depiction of (R)-Thalidomide, a compound with sedative effect.
(b) Depiction of (S)-Thalidomide, a CRBN targeting compound with
teratogenic effect

Figure 8. Illustration of stereochemisty and its depiction: wedge bonds.

8.2. Stereoisomerism
If we only take into account the atom and bond adjacency relations we have some relevant degree of freedom undescribed.
An often used example is our hands. While all bones have the same adjacency in both of our hands, we cannot rotate the two
such that they are identical: they are mirror images.

Note two important details. Firstly, we do not care about exact positions of atoms in 3D space when the molecule is
flexible, similarly as we do not distinguish a hand with closed or opened fingers, but differentiating between the left and right
hand. Secondly, the spatial organization has nothing to do with the placement of the atoms on the 2D depiction plane, these
positions are arbitrary.

To enhance our representation, new labels need to be introduced: wedge bonds and/or stereocenters. For example see
Figure 8. The filled wedge bond indicates that the atom or group at the thick end pointing out of the plane of the drawing,
while the dashed wedge bond indicates that the group is under that plane. The depicted compounds are mirror images of
each other, however, the difference in the biological effect can be dramatic (in the case of thalidomide the picture is more
complicated, as the two form can interconvert in the body, but for didactic pourposes let us assume this is not the case). Note
that if the left ring would be symmetric, for example by connecting the nitrogen to the neighboring carbon, the two compound
would be identical. A simple 180 degree rotation around the long axis of the compound would show this. Stereoisomerism
necessitates the presence of an atom lacking symmetric surroundings. This unique atom, such as the carbon at the wedge
bond in this scenario, is referred to as a stereo center.

Stereoisomers are not always mirror images of each other. If there are n stereocenters in a molecule (see Figure 9) there are
2n stereoisomers, forming pairs of mirror images (called enantiomers). The non-mirror image pairs are called diastereomers.

9. Details of graph algorithm subroutines
This section aims to provide in-depth insights into the subroutines utilized within the molecular graph constructor as intro-
duced in Algorithm 1.
• The first subroutine used in the molecular graph constructor is filterAtoms(Oa). This subroutine is implemented inside

the function iou_filter_bboxes in the file utils_graph.py .



(a) (D)-Threose (b) (L)-Threose

(c) (D)-Erythrose (d) (L)-Erythrose

Figure 9. Illustration of stereoisomeric relations: enantiomers and diastereomers. All four compound differs only in the orientation of the
two OH grops. While the compounds on the right can be transformed to the compound on the left by mirroring (they are enantiomers in
pairs) the compounds in top of each other cannot (they are diastereomers)

The function goes over all overlapping bounding boxes of atoms with IoU higher than 0.5. For every group of overlapping
bounding boxes the function will keep the bounding box with the highest score.

• checkCharges(Oc
,o

a) is responsible for determining which atom objects should carry a charge and is implemented in
predict_smiles.py from line 95 until 99:

95 charge_atoms = np.ones(len(filtered_bboxes))
96 for index,box_atom in enumerate(filtered_bboxes):
97 for box_charge,label_charge in zip(filtered_ch_boxes,filtered_ch_labels):
98 if bb_box_intersects(box_atom,box_charge) == 1:
99 charge_atoms[index]=label_charge

• checkStereoChem(Os
,o

a
c ) is applied to identify atoms functioning as stereocenters and is implemented in

predict_smiles.py from line 141 until 151:

141 stereo_bonds = np.where(mol_graph>4, True, False)
142 if np.any(stereo_bonds):
143 stereo_boxes = stereo_preds[image_idx][’boxes’][0]
144 stereo_labels= stereo_preds[image_idx][’preds’][0]
145 for stereo_box in stereo_boxes:
146 result=[]
147 for atom_box in filtered_bboxes:
148 result.append(bb_box_intersects(atom_box,stereo_box))
149 indices = [i for i, x in enumerate(result) if x == 1]
150 if len(indices) == 1:
151 stereo_atoms[indices[0]]=1

• checkEdge(V,ob) evaluates which vertices (atoms) overlap with the bonds and is implmented in predict_smiles.py
from line 109 until 118:

109 result = []



110 limit = 0
111
112 while result.count(1) < 2 and limit < 80:
113 result=[]
114 bigger_bond_box = [bond_box[0]-limit,

bond_box[1]-limit,bond_box[2]+limit,bond_box[3]+limit]
115 for atom_box in filtered_bboxes:
116 result.append(bb_box_intersects(atom_box,bigger_bond_box))
117 limit+=5
118 indices = [i for i, x in enumerate(result) if x == 1]

• filterCands(candAtoms) will select the two most probable atoms to form a bond when more than 2 candidate atoms
appear. This step is implemented in dist_filter_bboxes(cand_bboxes) in file utils.graph.py.

• Finally the validation step is performed by performing several iterations this code:

mol = Chem.MolFromMolFile(’molfile’,sanitize=False)
problematic = 0
try:

problems = Chem.DetectChemistryProblems(mol)
if len(problems) > 0:

mol = solve_mol_problems(mol,problems)

Where solve_mol_problems is implemented in file utils_graph.py.

10. Illustrations of types of atom-level entities
Examples of samples from the synthetically generated training set are illustrated in Figure 10 together with the drawn bound-
ing box labels for the different atom-level entity types: atoms, bonds, charges and stereocenters.

11. All results
In our experiments we assess the molecular structure prediction performance using accuracy and Tanimoto similarity, a
widely used metric for quantifying molecular similarity, to assess the resemblance between the model’s predictions and the
actual molecular graphs. Tanimoto similarity values range from 0 to 1, with higher values indicating greater similarity. A
Tanimoto similarity of 1 indicates that the structural descriptors are identical or that they are matching ‘on-bits’ in a binary
fingerprint. The binary fingerprint employed to measure the Tanimoto similarity is the Extended-connectivity fingerprint [28]
with radius 3 (ECFP6) and fingerprint length of 2048. Crafted with precision to capture essential molecular features relevant
to molecular activity, ECFPs (Extended-Connectivity Fingerprints) [28] are generated through a customized adaptation of the
Morgan [18] algorithm. This involves systematically traversing each atom in the molecule to extract all possible paths within
a specified radius. Following this, every unique path undergoes hashing into a numerical value within a predetermined bit
range. It is worth noting that the encoded fragment size expands proportionally with an increased radius.

Our Tables 4 and 5 report both the accuracy, computed by counting the instances where the predicted structures have
identical structural ECFP6 descriptors (denoted by a Tanimoto similarity of 1) and the average Tanimoto similarity. As an
additional metric, we include the accuracy when assessing whether the predicted resulting SMILES exactly match the true
SMILES.

Lastly, we conduct supplementary experiments utilizing ChemExpert on both the Chempix and hand-drawn test sets,
while altering the sequence of chemical structure tools. In both datasets, we note that the combined utilization of Atom-
Lenz+EditKT* and DECIMER fine-tuned within ChemExpert yields the best performance. Nevertheless, the arrangement
of tools within ChemExpert slightly alters the performance, depending on the test set and the specific performance metric,
as demonstrated in Table 5.



Illustrations of types of atom-level entities

(a) atom type entities (b) bond type entities (c) charge type entities

(d) stereocenter type entities

Figure 10. Different illustrations of types of atom-level entities



Method Acc. (exact match) Acc.(T = 1) T

DECIMER (v2.2.0) [24] 0.281 0.295 0.451
DECIMER fine-tuned(v2.2.0) [25] 0.567 0.622 0.727
Img2Mol [5] 0.047 0.084 0.275
MolScribe [23] 0.094 0.102 0.288
ChemGrapher [19] 0.002 0.002 0.065
OSRA [7] 0.006 0.006 0.065

AtomLenz 0.008 0.009 0.087
AtomLenz+EditKT* 0.279 0.338 0.484
ChemExpert(AtomLenz+EditKT*,[25]) 0.416 0.417 0.572
ChemExpert([25],[24]) 0.571 0.626 0738
ChemExpert([25],AtomLenz+EditKT*) 0.579 0.635 0.749

Table 4. Benchmark results on target domain (hand-drawn images test set). Both the accuracy, computed by counting the instances where
the predicted structures have identical structural ECFP6 descriptors (denoted by a Tanimoto (T ) similarity of 1) and the average Tanimoto
similarity (T ) are reported. As an additional metric, we include the accuracy when assessing whether the predicted resulting SMILES
exactly match the true SMILES.

Method Acc. (exact match) Acc.(T = 1) T

DECIMER (v2.2.0) [24] 0.036 0.05 0.1
DECIMER fine-tuned (v2.2.0) [25] 0.482 0.508 0.643
Img2Mol [5] 0.015 0.015 0.084
MolScribe [23] 0.228 0.269 0.417
ChemGrapher [19] 0.151 0.187 0.286
OSRA[7] 0.044 0.047 0.071

AtomLenz 0.026 0.054 0.064
AtomLenz+EditKT* 0.4 0.484 0.605
ChemExpert(AtomLenz+EditKT*,[23]) 0.412 0.5 0.619
ChemExpert(AtomLenz+EditKT*,[25]) 0.441 0.529 0.65
ChemExpert([25],AtomLenz+EditKT*) 0.487 0.518 0.655

Table 5. Benchmark results on out of domain ChemPix test set. Both the accuracy, computed by counting the instances where the predicted
structures have identical structural ECFP6 descriptors (denoted by a Tanimoto (T ) similarity of 1) and the average Tanimoto similarity (T )
are reported. As an additional metric, we include the accuracy when assessing whether the predicted resulting SMILES exactly match the
true SMILES.

Method Acc.(T = 1) (test set) T (test set) Acc.(T = 1) (train set) T (train set)

DECIMER (v2.2.0) [24] 0.001 0.039 0.099 0.142
Img2Mol [5] 0.0 0.0867 0.237 0.388
MolScribe [23] 0.013 0.0865 0.234 0.275
ChemGrapher [19] 0.004 0.067 0.007 0.073

AtomLenz 0.338 0.484 0.383 0.522

Table 6. All methods are retrained from scratch on same training dataset (4070 samples of hand-drawn images) to asses data efficiency.
Benchmark results on both hand-drawn images train and test set. Both the accuracy, computed by counting the instances where the
predicted structures have identical structural ECFP6 descriptors (denoted by a Tanimoto (T ) similarity of 1) and the average Tanimoto
similarity (T ) are reported.



Figure 11. Count accuracies per type over images if type is present in image for ChemPix test set. We observe errors of ’Atom-
Lenz+EditKT*’ and ’DECIMER fine-tuned’ tend to occur on different samples. Combining both approaches in ChemExpert improves
performance.


