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Supplementary Material

A. Overview

This document is structured as follows:
• Sec. B: Implementation details
• Sec. C: Dataset details
• Sec. D: Additional results
• Sec. E: Visual examples of challenging scenarios

B. Implementation Details

B.1. Representation Learning Stage

Inputs. We draw samples from the LRS3 dataset [1], which
exclusively contains real videos. We preprocess all videos
as explained in Sec. 3.1 in the main paper. The audio stream
is converted to a Mel-spectrogram of 128 Mel-frequency
bins, with a 16 ms Hamming window every 4 ms. We ran-
domly sample video clips of T = 3.2s in duration, sam-
pling 16 visual frames and 768 audio frames (Mel) with
clipping/padding where necessary. The 16 visual frames are
uniformly sampled such that they are at the first and third
quartile of a temporal slice (2 frames/slice × 8 slices). The
visual frames are resized to 224× 224 spatially and are aug-
mented using random grayscaling and horizontal flipping,
each with a probability of 0.5. We make sure that in a given
batch, for each sample we draw another sample from the
same video but at a different time interval to make sure the
model is exposed to the notion of temporal shifts when com-
puting the contrastive loss. Both audio and visual modalities
are normalized.

Architecture. We adopt the encoder and decoder architec-
tures of each modality from the VideoMAE [29] based on
ViT-B [5]. Each of the A2V/V2A networks is composed of
a linear layer to match the number of tokens of the other
modality followed by a single transformer block.

Optimization. We initialize the audio encoder and de-
coder using the checkpoint of AudioMAE [12] pretrained
on AudioSet-2M [7] and the visual encoder and decoder
using the checkpoint of MARLIN [2] pretrained on the
YouTubeFace [30] dataset. Subsequently, we train the repre-
sentation learning framework end-to-end, using the AdamW
optimizer [21] with a learning rate of 1.5e-4 with a cosine de-
cay [20]. The weights of the losses are as follows: λc = 0.01,
λrec = 1.0, and λadv = 0.1, which were chosen empirically
and based on previous research [2, 8]. We train for 500
epochs with a linear warmup for 40 epochs using a batch
size of 32 and a gradient accumulation interval of 2. The
training was performed on 4 RTX A6000 GPUs for approxi-
mately 60 hours.

Method Modality DF-TIMIT DFDC

AP AUC AP AUC

Xception [26] V 86.0 90.5 68.0 67.6
LipForensics [9] V 96.7 98.4 76.8 77.4

FTCN [33] V 100. 99.8 70.5 71.1
RealForensics [10] V 99.2 99.5 82.9 83.7

AVFF (Ours) AV 100. 100. 87.0 86.2

Table 1. Cross-Dataset Generalization. We evaluate our model’s
performance against baselines by testing the model trained on the
FakeAVCeleb dataset, on the DF-TIMIT dataset and a subset of the
DFDC dataset. Best result is in bold, and second best is underlined.

B.2. Deepfake Classification Stage

Inputs. We draw samples from FakeAVCeleb [16], which
consists of deepfake videos where either or both audio and
visual modalities have been manipulated. The preprocessing
and sampling strategy is similar to that of Stage 1, except
we do not draw an additional sample from the same video
clip as we do not use a contrastive learning objective at this
stage. We employ weighted sampling to mitigate the issue
of class imbalance between real and fake samples.

Architecture. Each of the uni-modal patch reduction net-
works is a 3-layer MLP, while the classifier head is a 4-layer
MLP. We do not make any changes to the representation
learning architecture.

Optimization. We initialize the representation learning
framework using the pretrained checkpoint obtained from
Stage 1. Subsequently, we train the pipeline end-to-end, us-
ing the AdamW optimizer [21] with a cosine annealing with
warm restarts scheduler [20] with a maximum learning rate
of 1.0e-4 for 50 epochs with a batch size of 32. The training
was performed on 4 RTX A6000 GPUs for approximately
10 hours.

C. Dataset Details
LRS3 [1]. This dataset introduced by Afouras et al. exclu-
sively comprises of real videos. It consists of 5594 videos
spanning over 400 hours of TED and TED-X talks in English.
The videos in the dataset are processed such that each frame
contains faces and the audio and visual streams are in sync.

FakeAVCeleb [16]. The FakeAVCeleb dataset is a deepfake
detection dataset, which consists of 20,000 video clips in
total. It comprises of 500 real videos sampled from the
VoxCeleb2 [3] and 19500 deepfake samples generated using
different manipulation methods applied on the set of real



Figure 1. Robustness to Unseen Visual Perturbations. We illustrate AUC scores (%) as a function of different levels of intensities for
various visual perturbations evaluated on the test set of FakeAVCeleb. Our model is more robust than RealForensics [10], which is the
current state-of-the-art in robustness to unseen visual perturbations.

videos. The dataset consists of the following manipulations
where the deepfake algorithms used in each category are
indicated within brackets.
• RVFA: Real Visuals - Fake Audio (SV2TTS [13])
• FVRA-FS: Fake Visuals - Real Audio (FaceSwap [18])
• FVFA-FS: Fake Visuals - Fake Audio (SV2TTS +

FaceSwap)
• FVFA-GAN: Fake Visuals - Fake Audio (SV2TTS +

FaceSwapGAN[22])
• FVRA-GAN: Fake Visuals - Real Audio (FaceSwapGAN)
• FVRA-WL: Fake Visuals - Real Audio (Wav2Lip [25])
• FVFA-WL: Fake Visuals - Fake Audio (SV2TTS +

Wav2Lip)

KoDF [19]. This dataset is a large-scale dataset comprising
real and synthetic videos of 400+ subjects speaking Korean.
KoDF consists of 62K+ real videos and 175K+ fake videos
synthesized using the following six algorithms: FaceSwap
[18], DeepFaceLab [23], FaceSwapGAN[22], FOMM [28],
ATFHP [31], and Wav2Lip [25]. We use a subset of this
dataset following [6] to evaluate the cross-dataset generaliza-
tion performance of our model (Tab. 3 in the main paper).

DF-TIMIT [17]. The Deepfake TIMIT dataset comprises
deepfake videos manipulated using FaceSwapGAN [22].
The real videos used for manipulation have been sourced by
sampling similar-looking identities from the VidTIMIT [27]
dataset. We use their higher-quality (HQ) version, which
consists of 320 videos, in evaluating cross-dataset general-

ization performance.

DFDC [4]. The DeepFake Detection Challenge (DFDC)
dataset is another deepfake dataset that consists of sam-
ples with fake audio besides FakeAVCeleb. It consists of
over 100K video clips in total generated using deepfake
algorithms such as MM/NN Face Swap [11], NTH [32],
FaceSwapGAN [22], StyleGAN [15], and TTS Skins [24].
We use a subset of this dataset consisting of 3215 videos, as
used in [9, 10] to evaluate the model’s cross-dataset general-
ization performance.

D. Additional Results

In extending our analysis beyond the results outlined in Sec.
4 of the main paper, we conducted additional experiments
to provide a more comprehensive evaluation of our model’s
performance. This supplementary investigation aims to en-
hance our understanding and confidence in the efficacy of
the proposed approach.

D.1. Cross-Dataset Generalization

In addition to the cross-dataset generalization evaluation
reported on the KoDF dataset (Tab. 3 of the main paper),
we further evaluate cross-dataset generalization on the DF-
TIMIT dataset and a subset of the DFDC dataset following
[9, 10]. We are limited to comparing against baselines with
open-source codes. We were unable to obtain the models nor



Figure 2. Robustness to Unseen Audio Perturbations. We il-
lustrate the variation of AUC and AP scores (%) as a function of
different levels of intensities for various audio perturbations eval-
uated on the test set of FakeAVCeleb. Overall our model depicts
impressive robustness to audio perturbations.

results for the other baselines from the authors. As illustrated
in Tab. 1, we achieve the best cross-dataset generalization
performance, when evaluated on both DF-TIMIT and DFDC.

D.2. Robustness to Unseen Perturbations

In real-world scenarios, videos undergo post-processing (e.g.
when sharing through social media platforms), which per-
turbs both audio and visual modalities. Hence, it is crucial
for a model to be robust to unseen perturbations. To this end,
we evaluate the performance of our model (trained without
augmentations) on several unseen perturbations applied to
each modality.

Visual Perturbations. Following [6, 9, 10], we evaluate the
performance on the following perturbations: saturation, con-
trast, block-wise distortion, Gaussian noise, Gaussian blur,
JPEG compression, and video compression on five different
levels of intensities. The implementations for the pertur-
bations and the levels of intensities were sourced from the
official repository of DeeperForensics-1.0 [14]. We compare
our model’s performance against RealForensics [10], which
has the current state-of-the-art performance in robustness to
unseen visual perturbations [6, 10]. As depicted in Fig. 1,
our model demonstrates enhanced robustness against unseen
visual perturbations compared to RealForensics in most sce-
narios. Particularly, noteworthy improvements are observed
in cases of block-wise distortion, Gaussian noise, and video
compression.

Audio Perturbations. In this experiment, we subject the
audio stream to a range of perturbations: Gaussian Noise,
pitch shift, changes in reverberance, and audio compression.

Perturbation Intensity Level

1 2 3 4 5

Gaussian Noise (SNR) 40 30 20 15 10
Pitch Shift (steps) ±2 ±4 ±6 ±8 ±10
Reverberance 20 40 60 80 100
Audio Compression (bitrate) 320k 256k 192k 128k 64k

Table 2. Parameters used to generate samples with audio perturba-
tions at different levels of intensities.

Method ACC AUC

(i) Ours with Frozen Stage 1 + MLP 94.8 85.3
(ii) Ours with Frozen Stage 1 + SVM 96.3 88.9

AVFF (Ours) 98.6 99.1

Table 3. Classification Performance on the Learned Represen-
tation. We evaluate the classification performance of the learned
representation by freezing the encoders and A2V/V2A networks
and training only the downstream networks. We employ (i) an MLP
similar to the proposed method, and (ii) a kernel SVM (RBF), as the
classifier. Both classifiers yield reasonably high metrics, indicating
the effectiveness of the learned representation at the end of Stage 1
in distinguishing between real and fake videos.

The performance of our model under these perturbations is
illustrated across five intensity levels in Fig. 2. To gener-
ate the perturbed audio samples, we employ the following
Python libraries: torchaudio (Gaussian noise, pitch shift),
pysndfx (reverberance), and pydub (audio compression). The
parameters used to generate samples at each intensity level
are tabulated in Tab. 2. As seen in Fig. 2, overall our model
is robust to various audio perturbations. A slight decrease
in performance is seen in cases of Gaussian noise and pitch
shift, with the increase in intensity. Notably, the model
showcases high robustness to changes in reverberance, with
minimal fluctuations across all intensity levels. However,
a noticeable reduction in average precision is observed for
high-intensity levels of audio compression, potentially due
to artifacts introduced by the reduced bitrate in extreme com-
pression scenarios.

D.3. Classification Performance on the Learned
Representation

We further evaluate the learned representation at the end of
Stage 1, by performing the downstream deepfake classifica-
tion task with the weights of the encoders and the A2V/V2A
networks frozen. We train two classifiers for the downstream
task: (i) the classifier network described in the main pa-
per, and (ii) kernel SVM using an RBF kernel (gamma=0.1,
C=1.0). The results are reported in Tab. 3. Both classifiers
yield reasonably high accuracy and AUC values. This is
indicative of the highly discriminative nature of the learned
representation at the end of Stage 1. This reinforces the
analysis on the learned representation at the end of Stage 1,



Figure 3. Visual Examples of a Few Challenging Scenarios. Im-
ages from left to right depict examples of extreme poses (e.g. near
profile), occlusions with masks, and occlusions with hands across
the face, which makes it challenging for our model to establish
correspondence between the audio and visual modalities.

as discussed in Sec. 4.2 of the main paper.

E. Visual Examples of Challenging Scenarios

As discussed in Sec. 6 of the main paper, since we rely on
audio-visual correspondence to distinguish between real and
fake videos, scenarios where such correspondence cannot be
established would be challenging. In Fig. 3, we depict a few
such visual examples.
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