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A. Additional Implementation Details
Unless stated differently, We employ publicly accessi-
ble official implementations of established methods in our
work. Specifically, for SPSR, in accordance with our peer-
reviewed competition practices, we utilize publicly avail-
able implementations provided by Open3D and Pymesh-
lab. We select the superior result between the two and
tune its hyperparameters including grid searches for param-
eters such as octree depth and the number of nearest neigh-
bors utilized in constructing the Riemannian graph for nor-
mal orientation propagation. It is important to highlight
that these libraries feature a normal estimation algorithm
grounded in local point cloud co-variance estimation, cou-
pled with normal orientation propagation employing mini-
mum spanning trees.

B. Metrics
Following the definitions from [2] and [7], we present here
the formal definitions for the metrics that we use for eval-
uation in the main submission. We denote by S and Ŝ the
ground truth and predicted mesh respectively. We follow [3]
to approximate all metrics with 100k samples from S and Ŝ
for ShapeNet and Faust and with 1M samples for 3Dscene.
For SRB, we use 1M samples following [1] and [4].

Chamfer Distance (CD1) The L1 Chamfer distance is
based on the two-ways nearest neighbor distance:
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Chamfer Distance (CD2) The L2 Chamfer distance is
based on the two-ways nearest neighbor squared distance:
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F-Score (FS) For a given threshold τ , the F-score be-
tween the meshes S and Ŝ is defined as:

FS
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,

where
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Following [5] and [6], we set τ to 0.01.

Normal consistency (NC) We denote here by nv the nor-
mal at a point v in S. The normal consistency between two
meshes S and Ŝ is defined as:

NC =
1

2|S|
∑
v∈S

nv·nclosest(v,Ŝ)+
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where

closest(v, Ŝ) = argminv̂∈Ŝ ∥v − v̂∥2.

Hausdorff distance (HD) This metric is defined as fol-
lows:
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