Adaptive VIO: Deep Visual-Inertial Odometry with Online Continual Learning

Supplementary Material

A. Additional Details on the VIO System

The main components of Adaptive VIO are illustrated in
Fig.5, which can be divided into four modules: prediction,
optimization, feedback, and keyframing. Prediction and op-
timization (except for initialization) are collectively called
tracking in this paper.

As an extension to Sec.3.3, we provide additional tech-
nical details about the VIO system in the following content.

Initialization: We use 8 frames for map initialization,
where the procedure is the same as DPVO[35]. To achieve
higher initialization accuracy, we require sufficient paral-
lax between frames. As for IMU initialization, we conduct
the Maximum-a-Posteriori estimation as ORB-SLAM3[6]
does. The states for initialization include velocity, scale,
gravity direction, and IMU bias. We perform IMU initial-
ization twice when accumulating 40 frames and 80 frames,
respectively. Between map initialization and IMU initial-
ization, we run visual bundle adjustment to track each
frame. All frames are treated as keyframes, and keyframe
culling is not performed. After IMU initialization, we ob-
tain the initial values for states with metric scale and aligned
coordinates, then the system enters the tracking process.

Tracking: For each incoming frame, we sample 96 fea-
ture patches and search for their correspondences with the
previous 13 keyframes. The initial pose estimation of the
new frame is generated by the IMU motion model. As for
optimization, the states of the latest 10 keyframes in the fac-
tor graph are subject to optimization, while the states of
other frames are fixed. Considering efficiency, during on-
line continual learning, only the last 4 frames have IMU
constraints, while in the formal deployment, all keyframes
within the sliding window have IMU constraints. We per-
form 2 iterations of VIBA for each tracking.

Feedback: During online continual learning, after each
tracking procedure, feedback losses are backpropagated to
the visual correspondence predictor and IMU bias predic-
tor. Considering resource and time consumption, not all
constraints in the factor graph are used as error terms. We
found that the loss calculated for IMU and vision is large for
the most recent few frames, while the loss between previous
keyframes is very small. Hence, for the IMU network, we
construct preintegration loss for the last 2 frames. For the
visual network, we constitute the photometric loss for the
feature patches from the last 4 frames. The feature patches
are reprojected into all associated keyframes in the factor
graph. Besides, due to partial overlap between keyframes,
patches in the projected positions of the target image that
extend beyond the image boundaries are excluded from loss

Prediction
Optimization
Feature || yr=========== ;
Encoder Initialization !
— ! l
— 1|
Feature Map | Map i
Sampling | Il) Keyframing
- ! ! Feedback
Visual | IMU | Keyframe
CO”BSP?HdenCC | Initialization 1 Culling
Predictor e
IMU Bias Bundle IMU Loss Factor Graph
i Updatin
Predictor Adjustment 1> 2
IMU : _
Bietieamiion Visual-Inertial
g Bundle
— .
Initial Motion e
Prediction

Figure 5. Main system components of Adaptive VIO. Learning-
based modules are colored in yellow and orange. Traditional com-
putational modules are colored in green.

calculation.

Keyframing: The keyframing strategies include
keyframe culling and factor graph updating. For each in-
put frame, we temporarily consider it as a keyframe. How-
ever, when it becomes the fourth-to-last (t — 4) frame, we
reassess whether to retain it as a keyframe. During on-
line continual learning, we verify if the disparity between
keyframes t — 5 and ¢ — 3 is sufficient. If it is, we retain
the ¢ — 4 frame; otherwise, we remove the frame from the
keyframe sequence and eliminate all related constraints in
the factor graph. In the formal deployment, we addition-
ally require that after removing two consecutive keyframes,
the next keyframe must be retained. This is to ensure the
stability of IMU constraints within the sliding window. Be-
sides, as for the formal deployment, when a keyframe is
retained, we also construct a covisibility graph for it. Ex-
cept for the keyframes already associated with it, we calcu-
late the disparity between this frame and other keyframes.
If the disparity is less than the median disparity of the al-
ready associated keyframes, we establish a covisibility re-
lationship between the two keyframes. For efficiency, the
number of such covisibility relationships should not exceed
8 pairs. Then we add these new visual constraints to the
factor graph.

We may notice the differences in the system settings
between online continual learning and formal deployment.
This is primarily due to two reasons. 1) Online learning re-
quires more computational resources and time because of
the need to compute feedback loss and perform backpropa-

Context
Features

Factor Graph

A
e o

Corr
9/ @

Figure 6. Network Architecture of Visual Correspondence Predic-
tor.

or ~omr [ow i b,

e e

Norm

f
I(n—l...n)

Figure 7. Network Architecture of IMU Bias Predictor.

gation. In order to get real-time or near real-time processing
for both settings, the factor graph is simplified compared
to the formal deployment. 2) Although factor graphs with
covisibility relationships offer higher accuracy, they attenu-
ate the weights of correspondences with large errors, which
may be counterproductive for network learning.

Our system demands around 16GB of GPU memory dur-
ing online continual learning and 12GB during formal de-
ployment.

B. Network Architecture

In this section, we present the network architecture of our
visual and IMU networks.

The paradigm of visual correspondence predictor is
shown as Fig.6. The inputs of the network are the coordi-
nates on the target frame after reprojection, along with the
context features of the target frame. After passing through
the correlation layer and other network layers, the factor
head outputs the predicted correspondence updates (residu-
als) and their weights. A detailed description of each com-
ponent can be found in DPVO, where the network is re-
ferred to as the “update operator”.

Please note that, unlike the update operator in DPVO, our
visual correspondence predictor does not contain a hidden
state. The hidden state plays a role in conveying information
during multiple calls to the network. Since our online con-
tinual learning conducts backpropagation after each track-
ing iteration, canceling the hidden state can alleviate the
mutual influence between multiple iterations, making every
prediction an independent procedure. This design makes
online adaptation more efficient and robust.

The architecture of the IMU bias predictor is shown in

Fig.7. b},_4 is the optimized bias estimates for the previous
frame, and by, is the bias prediction for the current frame.
I,_1.. nrepresents the IMU measurements in between. The
inputs are first normalized and then fed into fully connected
layers (FC1, FC2). FC1 encodes the bias as the initial hid-
den state for the GRU, while FC2 encodes the concatena-
tion of bias and measurements as the input of the GRU. The
final hidden state from the GRU is restored to the current
bias prediction through the FC3 layer. The hidden size for
the GRU is set to 64 in our method. The network models the
inherent bias variations of the sensor. Compared to the ran-
dom walk model, it mitigates the continuous propagation of
sudden bias estimation errors over time, making the system
more stable.

The bias predicted by the network originates from two
aspects. 1). For low-cost MEMS IMU, the bias in its static
state is referred to as fixed bias. It is inherent to the sen-
sor and associated with errors during manufacturing. This
bias remains approximately constant and cannot be entirely
eliminated by factory calibration. 2). With the motion of
the agent, the IMU bias is also influenced by both accel-
eration and angular velocity, especially in scenarios with
rapid changes in motion. The classic methods rely on ex-
trinsic parameter calibration to estimate fixed bias, whereas
our approach replaces it with neural networks. Additionally,
the networks also consider the influence of motion on bias
variation, thereby enhancing the accuracy and robustness of
the system.

We may notice that the inputs of both visual and IMU
networks are from the previous optimization, and the out-
puts of both networks are served for the subsequent opti-
mization. Such a pipeline where learning and computation
mutually support each other is a distinctive feature of our
VIO system.

C. Implementation of Optimization

Unlike classic VIO systems running on the CPU, most data
and processing in our approach are conducted on the GPU.

We leverage the advantage of GPU batch processing to
accelerate IMU processing, including computing preinte-
gration, covariance, Jacobian, and Hessian matrices. For
visual processing, in formal deployment, we utilize C++
and CUDA extension of PyTorch to further accelerate the
computation of residuals, Jacobians, and Hessians. How-
ever, during online continual learning, as loss functions re-
quire backpropagation through the factor graph, the process
is still implemented in Python.

For visual-inertial bundle adjustment, we combine the
IMU and visual counterparts with equal weights and utilize
the Gauss-Newton method for optimization. Like VI-DSO
and DM-VIO, we also apply the Schur complement trick
for matrix solving.

