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CLIP-BEVFormer: Enhancing Multi-View Image-Based BEV Detector with
Ground Truth Flow

Supplementary Material

1. Experiment Setup001

In our experiments, we adopt ResNet50 and ResNet101002
[2] as backbones for the BEVFormer-tiny and BEVFormer-003
base models, respectively. These backbones are initialized004
from the FCOS3D [6] checkpoint, following the configura-005
tion in BEVFormer [3]. We leverage the output multi-scale006
features from the Feature Pyramid Network (FPN) [4], with007
sizes of 1/16, 1/32, and 1/64, and the dimension of 256.008
During the training phase for CLIP-BEVFormer, we lever-009
age the pretrained language model in CLIP-RN101 [5] as010
our off-the-shelf language model.011

The BEV size for the tiny and base variants is set to 50×012
50 and 200× 200, respectively, while the perception ranges013
span from -51.2m to 51.2m along the X and Y axes. The014
resolution of the BEV grid is set to 0.512m. We incorporate015
learnable positional embeddings for BEV queries to enrich016
the spatial representation.017

The BEV encoder comprises 6 encoder layers, consis-018
tently refining BEV queries in each layer. During the spatial019
cross-attention module, implemented using the deformable020
attention mechanism, each local query corresponds to four021
target points with different heights in 3D space. The prede-022
fined height anchors are uniformly sampled from -5 meters023
to 3 meters.024

For each reference point on 2D view features, we utilize025
four sampling points around this reference point for each026
head. During training, we use a 2-frame history BEV for the027
tiny variant and a 3-frame history BEV for the base variant.028
We train our models for 24 epochs with a learning rate of029
2× 10−4 [3].030

2. 3D Object Detection Results with Various031

Baselines032

We have conducted experiments with various detection033
baselines, BEVformer [3], BEVformerV2 [7], and BEVerse034
[8]. We evaluate our model on both validation and test sets035
of nuScenes. The results presented in Tab. 1 show that our036
method consistently improves the perception capabilities of037
various baselines by significant margins on both sets, indi-038
cating its flexibility and model-agnostic nature.039

3. 3D Object Detection Metrics040

We adhere to standard evaluation metrics for 3D detection041
on the nuScenes dataset [1], encompassing metrics such as042
mean Average Precision (mAP), Average Translation Er-043
ror (ATE), Average Scale Error (ASE), Average Orientation044

Error (AOE), Average Velocity Error (AVE), Average At- 045
tribute Error (AAE), and nuScenes detection score (NDS). 046
Mean Average Precision (mAP). For mAP, we utilize the 047
Average Precision metric, modifying the definition of a 048
match by considering the 2D center distance on the ground 049
plane instead of intersection over union-based affinities. 050
Specifically, we match predictions with ground truth ob- 051
jects based on the smallest center distance within a certain 052
threshold. Average precision (AP) is calculated by integrat- 053
ing the recall vs precision curve for recalls and precisions 054
> 0.1. We then average over match thresholds of 0.5, 1, 2, 055
4 meters and compute the mean across classes. 056
True Positives (TP). TP metrics are designed to measure 057
translation, scale, orientation, velocity, and attribute errors. 058
These are calculated using a threshold of 2m center distance 059
during matching and are positive scalars. Metrics are de- 060
fined per class, and we then take the mean over classes to 061
calculate mATE, mASE, mAOE, mAVE, and mAAE. 062

• Average Translation Error (ATE). Euclidean center dis- 063
tance in 2D in meters. 064

• Average Scale Error (ASE). Calculated as 1 - IOU after 065
aligning centers and orientation. 066

• Average Orientation Error (AOE). Smallest yaw angle 067
difference between prediction and ground truth in radi- 068
ans. Orientation error is evaluated at 360 degrees for most 069
classes, except barriers, where it is evaluated at 180 de- 070
grees. Orientation errors for cones are ignored. 071

• Average Velocity Error (AVE). Absolute velocity error 072
in m/s. Velocity error for barriers and cones is ignored. 073

• Average Attribute Error (AAE). Calculated as 1 - acc, 074
where acc is the attribute classification accuracy. At- 075
tribute error for barriers and cones is ignored. 076

nuScenes Detection Score (NDS). We consolidate the 077
above metrics by computing a weighted sum: mAP, mATE, 078
mASE, mAOE, mAVE, and mAAE. As a first step, we 079
convert TP errors to TP scores using TP score = max(1 - 080
TP error, 0.0). We then assign a weight of 5 to mAP and 1 081
to each of the 5 TP scores, calculating the normalized sum. 082

4. Training and Inference Efficiency 083

Our model is trained with 4 A100 80GB GPUs. Our method 084
does not introduce any additional parameters and computa- 085
tions during the inference stage, which means that it allows 086
for enhanced performance without sacrificing real-time pro- 087
cessing capabilities. We provide detailed information on 088
memory, training time, number of parameters and FPS in 089
Tab. 2. 090
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5. Visualization091

In Fig. 1 and Fig. 2, we present a comprehensive visualiza-092
tion of the qualitative detection performance achieved by093
CLIP-BEVFormer. The images provide insights into both094
camera and Bird’s Eye View (BEV) perspectives, offering095
a nuanced understanding of the model’s predictions. No-096
tably, these visualizations highlight the enhanced alignment097
between CLIP-BEVFormer’s predictions and ground truth098
detections in both camera and BEV views, underscoring the099
model’s proficiency in accurately capturing the 3D environ-100
ment.101
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Figure 1. Visualization results on nuScenes validation set. We demonstrate qualitative detection performance on both camera and BEV
images. As can be seen in BEV images, our CLIP-BEVFormer method demonstrates improved alignment with ground truth detections.

Model Backbone Validation Set Test Set
NDS ↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS ↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVformer-tiny R50 35.5 25.1 0.898 0.293 0.651 0.657 0.216 37.2 27.3 0.856 0.283 0.609 0.753 0.146
+Ours R50 38.8 27.3 0.856 0.282 0.583 0.538 0.228 41.1 29.3 0.811 0.271 0.554 0.579 0.136

BEVformer-base R101 51.7 41.6 0.673 0.274 0.372 0.394 0.198 53.5 44.5 0.631 0.257 0.405 0.435 0.143
+Ours R101 55.1 44.1 0.641 0.253 0.319 0.307 0.172 54.7 44.7 0.591 0.257 0.417 0.371 0.128

BEVformerV2 R50 42.6 35.1 0.753 0.286 0.466 0.807 0.186 42.5 35.4 0.707 0.278 0.506 0.895 0.134
+Ours R50 44.1 37.0 0.729 0.281 0.438 0.791 0.204 43.6 37.9 0.676 0.272 0.475 0.975 0.141

BEVerse Swin 46.6 32.1 0.681 0.278 0.466 0.328 0.190 50.1 36.2 0.610 0.257 0.451 0.355 0.131
+Ours Swin 48.3 34.2 0.665 0.270 0.456 0.318 0.170 52.2 37.4 0.556 0.247 0.413 0.301 0.129

Table 1. 3D object detection results on nuScenes validation and test sets.
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Figure 2. Visualization results on nuScenes validation set. Our CLIP-BEVFormer demonstrates improved alignment with ground truth
detections on both camera and BEV images.
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Model Train Mem (GB) Train Hrs # Params (M) FPS

BEVformer-tiny ∼7 ∼46 33 5.1
+Ours ∼7 ∼46 33 5.1

BEVformer-base ∼25 ∼90 69 2.1
+Ours ∼25 ∼90 69 2.1

BEVformerV2 ∼46 ∼38 56 2.3
+Ours ∼46 ∼38 56 2.3

BEVerse ∼48 ∼72 102.5 4.4
+Ours ∼48 ∼72 102.5 4.4

Table 2. Efficiency details. FPS is tested on 1 V100 GPU.
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