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A. Training Setup
A.1. Lens Parameters Setup

In our simulation, the wavefront is modeled with a pixel
size of 3.69 µm and a resolution of 1024 × 1024. We use
the first 15 terms in Noll notation to represent the Zernike
coefficients, which model the surface profile. The refractive
indices are defined as 1.488, 1.493, and 1.499 to simulate
the lens’s refraction of red, green, and blue light at wave-
lengths of 640 nm, 550 nm, and 460 nm, respectively. The
depth is randomly sampled from a range from 0.33 to 2 me-
ters to account for potential variations in distance between
individuals and the camera in real-world scenarios. The dis-
tance between the lens and sensors z is set at 35.5 mm.

A.2. Initialization, Training and Fine-Tuning Setup

The training of OpticalDR consists of four steps. The
training details of each steps are list as follows:

Step 1. We utilize the CelebA dataset [2] to train the
lens and SANet, allowing the lens to generate privacy-
preserving images with Li. The lens is initialized with the
fourth Zernike coefficient set to -51 and is trained using the
Adadelta optimizer with a learning rate of 1. Concurrently,
SANet is trained with the Adam optimizer employing a
learning rate of 0.01. We save all parameters when the val-
idation loss reaches a minimum. The SANet structure used
in this stage is a compact version of ResNet, specifically
ResNet10, with bottleneck blocks replaced by SA modules.

Step 2. The CK+ dataset [3] is employed to train the lens
and a SANet for acquiring emotional information. We use
pretrained parameters of the lens and SANet from Step 1
as the initial lens and the initial emotion recognition model.
The learning rate for the lens is set to 0.01, while for SANet,
it is set to 0.0001 during this stage. Parameters are saved
when the validation loss Le reaches a minimum.

Step 3. The AVEC 2014 dataset [7] is utilized for ac-
quire depression-related features optimizing Ld. Videos
from AVEC 2014 are extracted frame-by-frame and em-
ployed for training purposes. During the validation process,
videos are sampled with a frame interval of 10, and the av-
erage output from all frames within a single video sample
is used as the result for that sample. Human face alignment

is performed using the Dlib toolkit. During alignment, we
ensure that the centers between the eyes are aligned, and the
vertical distance between the eyes and the mouth is set to be
1/3 of the image height. In the training phase, we use the
pretrained lens and SANet parameters obtained from Step
2 as the initial model weights containing emotion informa-
tion. The learning rate for the lens is set to 0.01, and for
SANet, it is set to 0.0001 in this stage. All parameters are
saved when the validation loss Ld reaches a minimum.

Step 4. For fine-tuning with the final fusion layer, we
utilize the AVEC 2014 dataset and employ the depression
self-evaluation score of each sample provided by the dataset
as the label. In this step, we employ the fusion model with
2 MulT [6] layers, each having 4 attention heads. The lens
uses the weight from Step 3, and the emotion SANet and de-
pression SANet use weights from Step 2 and Step 3, respec-
tively. Then the parameters of lens and SANets are frozen
during training in this step. Training of the fusion layer is
performed using Adam as the optimizer with a learning rate
of 0.0001 for optimizing Ls. During validation and test-
ing, we assess performance using MAE and RMSE as the
evaluation criteria on AVEC 2013 and AVEC 2014, allow-
ing for comparisons with other approaches. The calcula-
tion method for validation and testing involves averaging
the output from frames sampled at intervals of 10.

A.3. Comparison with Facial Features Disentangle-
ment

Since we progressively train the OpticalDR, during
which we involve the disentanglement of facial features,
emotion, and depression features, we assessed the perfor-
mance of TDGAN [8], which employs the disentanglement
of identity and emotion features for facial expression recog-
nition. The results are presented in Tab. 1. TDGAN demon-
strates competitive performance, particularly for the AVEC
2014 dataset. However, TDGAN heavily depends on visi-
bly clear facial images.

A.4. Time and Memory Consumption

Once the optical lens is optimized and deployed, the in-
ference time and memory consumption depend solely on the
deep-learning model in OpticalDR. We compared FLOPs,
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Figure 1. CAM results for optical privacy-preserving DR approaches. Our (c) OpticalDR generates features with more variation compared
to (a) ViT + lens, and exhibits clearer patterns compared to (b) STA-DRN + lens. Red areas represent high activation levels, while blue
areas represent low activation levels.

Table 1. Performance Comparison of OpticalDR and TDGAN.

Method Privacy-
Preserving

AVEC 2013 AVEC 2014
MAE RMSE MAE RMSE

TDGAN × 8.56 10.75 8.26 10.50
OpticalDR

√
7.53 8.48 7.89 8.82

Table 2. Comparison of the time and memory consumption of the
privacy-preserving DR model.

Method FLOPs/G Params/M Time/ms
LQGDNet [5] 0.23 2.44 78.63
ViT [1] 11.29 58.07 4.15
STA-DRN [4] 4.84 33.32 2.63
OpticalDR 4.36 67.28 11.64

Params, and inference time in Tab. 2, and our method is
comparable. It’s crucial to note that the handcrafted fea-
ture extraction in LQGDNet makes its inference time not
directly comparable with other deep-learning methods.

B. CAM Visualization
The full visualizing CAM results for OpticalDR and

comparison with ViT + lens and STA-DRN (SA) + lens are
shown in Fig. 1.

C. Visualization of Privacy Preserving Images
In this section, we present images generated by the lens

within OpticalDR, showcasing samples with diverse levels
of depression, as illustrated in Fig. 2. While the privacy-

preserving images obscure identity details, discernible pat-
terns persist. These patterns are likely intrinsic information
utilized by the deep learning model for DR.

D. Visualization of Lens

We visualize the PSFs of the optimized lens in Opti-
calDR, as shown in Fig. 3.
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Figure 2. The visualization of privacy-preserving images generated by OpticalDR at different depression levels. A high level of privacy
preservation is achieved, making it difficult to observe individual information.

Figure 3. Visualization of simulated PSFs of the optimized lens in OpticalDR under various focal distances is shown in the top line, with
log-transformed PSFs presented for enhanced clarity in the corresponding bottom line.
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