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In this appendix, we provide more details regarding the
following aspects: More implementation details (Sec. 1);
more ablative studies (Sec. 2); more results with driven
poses from novel datasets (Sec. 3); runtime analysis for the
major components (Sec. 4); realtime applications built upon
ASH (Sec. 5); more detailed discussion on limitations and
future directions (Sec. 6).

1. Implementation Details
In the main paper, we mentioned that ASH learns the Gaus-
sian splat parameters in the 2D texture space of an animat-
able human template M(θf ) = Vf . Here, we provide
more details regarding the deformable template mesh and
the motion-aware decoders.
Deformable Template Mesh. We adopt the formulation
introduced in Habermann et al. [3] for modeling the de-
formable template mesh, which deforms the template mesh
vertices Vm in the canonical space with a learned embed-
ded deformation [9, 10]:

V̄f,i = Di+
∑

j∈Nnv,i

wi,j(R(Aj)(Vm,i−VG,j)+VG,j+Tj)

(1)
where V̄f,i ∈ R3 denotes the deformed template vertices
in the rest pose. Nnv,i ∈ N indicates the indices for the
embedded graph node [10] that are connected to the i th
vertex on the template mesh. VG,j ∈ R3, Aj ∈ R3, and
Tj ∈ R3 denotes the rest positions, Euler angles, and trans-
lations of the embedded graph nodes. Notably, the connec-
tivity of the embedded graph VG,j can be adopted by sim-
plifying the template mesh M using quadric edge collapse
decimation [1, 2]. Moreover, the connection, as well as the
connection weights wi,j , between the template mesh Vm
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and the embedded graph are generated Sumner et al. [10].
R(·) ∈ R3×3 denotes the function that converts the Euler
angle to a rotation matrix. Di ∈ R3 indicates the per-vertex
displacement to model an even finer level of geometry de-
tails. Specifically, embedded graph parameters VG,j , Aj ,
and per-vertex displacements Di are derived from skeletal
motion θ̄f with structure-aware graph convolution neural
networks. We refer to Harbermann et al. [3] for more de-
tails.
Motion-aware Decoders. ASH adopts motion-aware 2D
convolutional neural networks, i.e., the geometry network
Egeo, and the appearance network Eapp, predicting the ge-
ometry and appearance parameters of the Gaussian splats
from the motion-aware textures (Tn,f ,Tp,f ). Both the ge-
ometry network Egeo and the appearance network Eapp are
U-Nets implemented following the configuration mentioned
in Olaf et al. [8]. Specifically, we channel-wise concatenate
the global appearance features Φf ∈ R16 to the bottleneck
features of the appearance network Eapp to account for the
lighting variations in the studio. The global appearance fea-
ture Φf is derived from positional encoded skeleton root
translation with a 3-layer shallow MLP, of which the width
is set to 32.

2. Ablations

In this section, we provide more ablative studies to demon-
strate the effectiveness of ASH.
Number of Camera Views. To assess the robustness of
ASH against sparser camera view supervision, we con-
ducted ablative experiments that take multi-view videos
from 12, 30, and 60 cameras as supervision, termed as w/
12.cam, w/ 30.cam, and w/ 60.cam. Note that the selected
camera views are evenly distributed in the studio. As illus-
trated in Fig. 1 and Tab. 1, ASH can still accurately synthe-
size the animatable characters when training with sparser
input views.
The Impact of 2D Learning. To validate the efficacy of the
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Training Pose Testing PoseMethods PSNR LPIPS PSNR LPIPS
w/ MLP 28.05 34.93 26.79 35.00
w/ 12.cam 33.50 10.76 26.96 21.66
w/ 30.cam 35.37 8.52 27.08 20.76
w/ 60.cam 35.49 8.32 27.14 20.42
Ours 35.47 8.30 27.13 20.22

Table 1. Ablation Study. We further assess our design choices
on the image synthesis tasks with the subject wearing loose out-
fits in the DynaCap [3] dataset. We highlight the best and the
second-best scores.

Figure 1. Qualitative Ablation. We compare ASH with the mod-
els that take alternative design choices. ASH excels in render-
ing quality than the model directly learns the Gaussian parameters
from 3D canonical space (w/ MLP). Moreover, ASH exhibits ro-
bustness against fewer training views (w/ 12.cam, w/ 30.cam, w/
60.cam).

2D texel paradigm for 3D Gaussian splats, we conducted
an ablative experiment that predicts the 3D Gaussian pa-
rameters directly from 3D, termed as w/ MLP. We adopted
an 8-layer MLP that consumes the skeletal motion θ̄f and
the positional-encoded canonical Gaussian position µ̄i, pre-
dicting the Gaussian splat parameters {Gi} in the canonical
space. Specifically, the width for the hidden layers of the
MLP is set to 256. Similar to ASH, the canonical Gaussian
splats are transformed to observation space through Dual
Quaternion skinning [4]. As illustrated in Fig. 1 and Tab. 1,
directly learning the Gaussian parameters in 3D will lead to
blurry rendering and cannot preserve the motion-dependent
wrinkle details. In contrast, ASH, which formulates the
learning of 3D Gaussian splats as image translation in 2D
texel space, delivers high-quality rendering with delicate
details.
The Reliance on the Accuracy of the Template. Al-
though our method is conditioned on a template mesh, it
can compensate for tracking errors with learnable motion-

Training Pose Testing PoseMethods PSNR LPIPS PSNR LPIPS
SMPL 34.93 14.90 28.75 24.87
Ours 35.47 8.30 27.13 20.22

Table 2. ASH conditioned on SMPL. ASH achieves significantly
better quantitative performance than the SOTA real-time methods.

Figure 2. ASH conditioned on SMPL. Despite large deviations
between the underlying template and the real surface, ASH gener-
ates visually plausible results.

Figure 3. Results with AMASS DanceDB motion. ASH pro-
duces photorealistic rendering given the motion from an entirely
different dataset.

aware residual deformations for the Gaussian splats. To val-
idate our method’s robustness against errors in mesh track-
ing, we replaced the original template mesh with SMPL
body meshes [6]. Despite large deviations between the tem-
plate and ”the real surface,” our method generates visually
plausible results (Fig. 2) and achieves significantly better
quantitative performance than the SOTA real-time methods
(Tab. 2), which heavily relies on an accurate deformable
template [3].

3. More Results

In Tab. 2 in the main paper, we report the quantitative and
qualitative performance on the testing set of the DynaCap
dataset, which is an established and challenging benchmark,
with the testing set containing more than 7000 frames show-
ing strongly varying poses.

To further highlight the pose generalization ability of
ASH, we retarget our skeleton to SMPL motions from
the AMASS dataset (DanceDB) [7] to drive our character.
Fig. 3 illustrates that even for motions from an entirely dif-
ferent dataset, ASH could generate photoreal rendering with
delicated wrinkle details.



Method Stg.1 Stg.2 Stg.3 Stg.4 Time FPS
w/ 128.res. 20.28 1.93 5.57 1.91 29.69 33.68
w/ 512.res. 24.25 16.34 18.45 4.31 63.35 15.79
Ours 21.03 3.60 7.00 2.11 33.74 29.64

Table 3. Runtime Analysis. We present detailed runtime for each
stage in ASH measured in milliseconds. We also report the run-
time of the models that take halved and doubled texel resolution,
termed as w/ 128.res. and w/ 512.res., respectively. Note that
ASH can render high-quality animatable humans in a real-time
frame rate.

4. Runtime Analysis
In this section, we conduct a detailed runtime analysis for
each major component in ASH. Specifically, we record the
runtime for each major component when rendering a 1K
(1285×940) image on a single Nvidia Tesla A100 graphics
device. Additionally, the runtime analysis is benchmarked
on models with different texture space resolution, specifi-
cally at 128, 512, and 256, referred to as w/ 128.res, w/
512.res, and Ours, respectively. Here, we divide the ren-
dering pipeline of ASH into four steps:
• Creating the deformable template meshes M(θf ) from

skeletal motions θf with structure-aware graph convolu-
tion networks, termed as Stg.1.

• Computing motion-aware texture maps (Tn,f ,Tp,f )
from deformable template meshes M(θf ), termed as
Stg.2.

• Predicting the canonical Gaussian splats {Gi} with
motion-ware geometry decoder Egeo and appearance de-
coder Eapp, termed as Stg.3.

• Performing tile-based rasterization with the predicted
Gaussian splats {Gi}, termed as Stg.4.
Tab. 3 illustrates the runtime for each component in ASH

for models with different 2D texel resolutions. While halv-
ing the texel resolution (w/ 128.res.) speeds up the image
synthesis of the animatable humans, it may produce blurry
details in the rendered images. Doubling the texel resolu-
tion (w/ 512.res.) results in comparable rendering quality.
Nevertheless, it significantly increases computational com-
plexity, preventing the model from being real-time compat-
ible. In contrast, ASH can generate high-fidelity renderings
of animatable characters in a real-time frame rate.

5. Application
In this section, we introduce ASH Player, a real-time appli-
cation built upon ASH.

Fig. 4 presents a screenshot of ASH Player, which runs
in the web browser on a personal computer. The backend
model of ASH Player, i.e., ASH, is deployed on the GPU
cluster server. Once users specify the skeletal poses and
virtual camera views, ASH Player will present the photoreal
rendering of animatable characters, which is real-time com-

Figure 4. System Overview. ASH Player is an interface runs
in the browser, visualizing the imagery and skeletal poses of ani-
matable characters. The renderings of the animatable humans are
computed in real time from the GPU cluster server and streamed
to the ASH Player front-end interface on a personal computer.

puted and streamed from the GPU cluster server. Moreover,
ASH Player allows users to inspect the animatable charac-
ters with spiral camera views. Please refer to the supple-
mentary video for a more comprehensive visualization.

6. Limitations
Although ASH enables high-fidelity, real-time rendering of
animatable human characters, it has certain limitations that
we hope to address in the future. Firstly, ASH does not ex-
tract detailed explicit geometry from the Gaussian splats.
We will explore refining the explicit template meshes by
backpropagating the gradient from image space into the
template meshes using splatting. Additionally, ASH does
not model topological changes like opening a jacket. Future
research might focus on modeling the topological changes
with the adaptive adding and removal of Gaussian splats
introduced in the original 3D Gaussian splatting paper [5].
Lastly, as various factors could affect the appearance of dy-
namic clothed humans, it is unfeasible to establish a one-to-
one correspondence between the skeletal motions and the
dynamic clothed human appearance. Future research will
explore different types of fine-grained control to define hu-
man rendering, e.g., the external physical forces.
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