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1. Band Index Selection Using RRQR
1.1. Notation

The QR factorization of matrix X ∈ Rm×n is defined as

X = QR ≡ Q

[
R11 R12

0 R22

]
, (25)

where Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n

is an upper triangular matrix. Then Rk(X) is defined as

Rk(X) =

[
R11 R12

0 R22

]
. (26)

For R11, 1/ωi(R11) denotes the 2-norm of the ith row of
R−1

11 . For R22, 1/γi(R22) denotes the 2-norm of the jth
column of R22. Then ρ(R, k) is defined as

ρ(R, k) = max
1≤i≤k

1≤j≤n−k

√(
R−1

11 R12

)2
i,j

+ (γj(R22)/ωi(R11))
2.

(27)
Πi,j denotes the permutation that interchanges the ith and
jth columns of a matrix.

1.2. RRQR

In this section, we provide a more detailed description of
the RRQR algorithm process [12] employed in our work.
As introduced in Sect. 3.3, the RRQR is used to determine
the band index (i1, i2, ..., iK) so that |det(Vs)| is prevented
from being zero and each band in the reduced image A is
able to encode different image information. Given a matrix
M ∈ Rm×n with m ≥ n, the QR factorization of M with
its columns permuted can be formulated as

MΠ = QR ≡ Q

[
R11 R12

0 R22

]
, (28)

where Q ∈ Rm×m is an orthogonal matrix, R ∈ Rm×n is
an upper triangular matrix and Π is a permutation matrix.

The RRQR aims to choose Π such that σmin(R11)
is sufficiently large and σmax(R22) is sufficiently small,
where σ(·) denotes the singular values. The RRQR fac-
torization algorithm works by interchanging any pair of
columns that sufficiently increases |det(R11)|, resulting
in a large |det(R11)|. The details of the RRQR process
are illustrated in Algorithm 2, where k and f ≥ 1 are hy-
perparameters. It can be proven that |det(R11)| increases
strictly with every interchange and the algorithm is com-
pleted within a finite number of permutations. Readers

Algorithm 2: RRQR Algorithm
Input: M, k, f
Output: Permutation matrix Π

Compute R := Rk(M) and Π = I
while True do

step 1: Compute ρ(R, k)
step 2: if ρ(R, k) ≤ f then Break;
step 3: Find i and j such that ρ(R, k) > f
step 4: Compute R := Rk(RΠi,j+k) and
Π := ΠΠi,j+k

end
return Π

could refer to [12] for more detailed proof. We replace M
in Eq.(28) with VT and we have

VTΠv =
[
QvRv1 QvRv2

]
(29)

We define VT
s as QvRv1 and then we could readily ob-

tain |det(Vs)| = |det(Rv1)|. Therefore, by solving the
RRQR factorization problem of VT utilizing the algorithm
proposed in [12], the permutation matrix Πv is obtained and
|det(Vs)| is maximized. The indices corresponding to the
first K columns of the permuted VT are defined as the band
selection index.

2. Diffusion Model
In HIR-Diff, we employ a pre-trained diffusion model pro-
posed in [10] to generate the reduced image A. The diffu-
sion model is a U-Net proposed in [40] and is trained on an
amount of 3-channel remote sensing images without human
supervision. Since the network requires the input image to
be 3-channel, the rank value K in our work is set as 3 so that
the reduced image A with 3 channels can be denoised with
the pre-trained network. Although the rank value is small,
we found that it is sufficient to restore the image details and
helps to keep noise out of the estimated coefficient matrix
E and the restored image, since the matrix V obtained from
the SVD of the observed image as introduced in Sec. 3.3 is
cleaner and the low-rank property enables noise reduction
of the restored image.

3. Coefficient Matrix Estimation
In our work, we employ SVD and RRQR to estimate the
coefficient matrix E as introduced in Sec. 3.3. The visu-
alization results of the estimated E for the WDC dataset



Figure 5. The visualization results of the estimated E. Least Square and Ground Truth (LS) denote the coefficient matrix E estimated
by employing the least square method with the observed image and the clean image, respectively. Ours and Ground Truth (SVD) denote
the coefficient matrix E estimated using SVD and RRQR proposed in our work with the observed image and the clean image, respectively.

are demonstrated in Fig. 5. The results of the matrix E
estimated using the least square method proposed in [38]
is also provided for comparison. Specifically, the least-
squares method directly selects several bands from the ob-
served image Y as the reduced image A, and then estimates
the coefficient matrix E by solving the least-squares prob-
lem.

argmin
E

||Y − A×3 E||2F . (30)

Since there is a lot of noise in the reduced image A as the
observed image suffers from various degradation, the esti-
mated E is unreliable, resulting in undesirable HSI restora-
tion performance. On the contrary, our estimated coefficient
matrix E is robust to noise and exhibits a high degree of
similarity to ground truth, verifying the effectiveness of our
estimation method.


