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Supplementary Material

1. Band Index Selection Using RRQR
1.1. Notation

The QR factorization of matrix X € R™*" is defined as
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where Q € R™*™ is an orthogonal matrix and R € R"*"
is an upper triangular matrix. Then Ry (X) is defined as

Rll R12:| ) (26)
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For Ry1, 1/w;(R11) denotes the 2-norm of the ith row of
Rl_ll. For Rygo, 1/7;(Ra2) denotes the 2-norm of the jth
column of Ras. Then p(R, k) is defined as

pRF) = max \/(Ri'Ras) | + (3 (Roz) /s(Ran)).
1<j<n—k
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IL; ; denotes the permutation that interchanges the ith and
jth columns of a matrix.

1.2. RRQR

In this section, we provide a more detailed description of
the RRQR algorithm process [12] employed in our work.
As introduced in Sect. 3.3, the RRQR is used to determine
the band index (i1, 42, ..., ix ) so that | det(V )| is prevented
from being zero and each band in the reduced image A is
able to encode different image information. Given a matrix
M € R™*™ with m > n, the QR factorization of M with
its columns permuted can be formulated as

Rll R12 :| (28)
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where Q € R™*™ is an orthogonal matrix, R € R"*" is
an upper triangular matrix and IT is a permutation matrix.
The RRQR aims to choose IT such that o, (R11)
is sufficiently large and op,ax(Ra2) is sufficiently small,
where o(-) denotes the singular values. The RRQR fac-
torization algorithm works by interchanging any pair of
columns that sufficiently increases |det(Rjy1)|, resulting
in a large |det(Ryqq1)|. The details of the RRQR process
are illustrated in Algorithm 2, where k£ and f > 1 are hy-
perparameters. It can be proven that | det(Ry1)| increases
strictly with every interchange and the algorithm is com-
pleted within a finite number of permutations. Readers

Algorithm 2: RRQR Algorithm
Input: M, k, f
Output: Permutation matrix IT

Compute R := Ry (M) andII =1
while True do
step 1: Compute p(R, k)
step 2: if p(R, k) < f then Break;
step 3: Find ¢ and j such that p(R, k) > f
step 4: Compute R := R, (RII; ;1) and
II .= HHi,j-l—k'
end
return I1

could refer to [12] for more detailed proof. We replace M
in Eq.(28) with VT and we have

VTHV - [Qvva QURUZ] (29)

We define VST as Q,R,1 and then we could readily ob-
tain |det(V,)| = |det(Ry1)|. Therefore, by solving the
RRQR factorization problem of VT utilizing the algorithm
proposed in [12], the permutation matrix IT, is obtained and
| det(V )| is maximized. The indices corresponding to the
first K columns of the permuted VT are defined as the band
selection index.

2. Diffusion Model

In HIR-Diff, we employ a pre-trained diffusion model pro-
posed in [10] to generate the reduced image A. The diffu-
sion model is a U-Net proposed in [40] and is trained on an
amount of 3-channel remote sensing images without human
supervision. Since the network requires the input image to
be 3-channel, the rank value K in our work is set as 3 so that
the reduced image A with 3 channels can be denoised with
the pre-trained network. Although the rank value is small,
we found that it is sufficient to restore the image details and
helps to keep noise out of the estimated coefficient matrix
FE and the restored image, since the matrix V obtained from
the SVD of the observed image as introduced in Sec. 3.3 is
cleaner and the low-rank property enables noise reduction
of the restored image.

3. Coefficient Matrix Estimation

In our work, we employ SVD and RRQR to estimate the
coefficient matrix E as introduced in Sec. 3.3. The visu-
alization results of the estimated E for the WDC dataset



Least Square Ground Truth (LS) Ours Ground Truth (SVD)

191

191 191

153 153 153

115 115 115

Denoising
(0=50)

76 76 4

38 4 38 4

04
0

04

191 191

153 153

Super-Resolution 15 115 1s

(scale factor=x4) 76 76 1 76

38 38 A 38

0 0 T T 0+

0 1 2

w

191 191 191

153 153 153

Inpainting 15 115 115

(masking rate=0.8) 76 76 76

38 38 38 4

0

0

0
3 0

=
~
w

Figure 5. The visualization results of the estimated E. Least Square and Ground Truth (LS) denote the coefficient matrix E estimated
by employing the least square method with the observed image and the clean image, respectively. Ours and Ground Truth (SVD) denote
the coefficient matrix E estimated using SVD and RRQR proposed in our work with the observed image and the clean image, respectively.

are demonstrated in Fig. 5. The results of the matrix E
estimated using the least square method proposed in [38]
is also provided for comparison. Specifically, the least-
squares method directly selects several bands from the ob-
served image ) as the reduced image .4, and then estimates
the coefficient matrix E by solving the least-squares prob-
lem.
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Since there is a lot of noise in the reduced image A as the
observed image suffers from various degradation, the esti-
mated E is unreliable, resulting in undesirable HSI restora-
tion performance. On the contrary, our estimated coefficient
matrix E is robust to noise and exhibits a high degree of
similarity to ground truth, verifying the effectiveness of our
estimation method.



