
How to Train Neural Field Representations: A Comprehensive Study
and Benchmark

Supplementary Material

1. NeFs Architectures
SIREN [9]. SIRENs, short for sinusoidal representation
networks, are a variant of multilayer perceptron character-
ized by the utilization of sinusoidal activations. By employ-
ing periodic activation functions, SIRENs enhance the net-
work’s capability to grasp nuances in the signal, particularly
when handling wave-based signals and images. The config-
uration of a SIREN network is the following:

h(1) = x

h(i) = sin
(
Ω0W

(i−1)h(i−1) + b(i−1)
)
, i = 2, . . . , k − 1

fθ(x) =W (k)h(k) + b(k),

(1)

where W (i−1) ∈ Rdi×di−1 and b(i−1) ∈ Rdi denote the
weight matrix and bias vector for the i-th layer, respectively,
and Ωo is a scalar. Here, the sin function is utilized as the
activation function at each layer.

MFNs [5]. Multiplicative Filters Networks are NeFs ar-
chitectures that don’t rely on compositional depth for ex-
pressivity, but rather on nonlinear filters that are applied to
the input and iteratively passed through linear functions and
multiplied together. In particular, an MFN is defined by the
recursion

z(1) = g
(
x;ψ(1)

)
z(i+1) =

(
W (i)z(i) + b(i)

)
⊙ g

(
x;ψ(i+1)

)
, i = 1, . . . , k − 2

fθ(x) =W (k−1)z(k−1) + b(k−1),

(2)

where ⊙ is the element-wise multiplication, W (i) ∈
Rdi+1×di , b(i) ∈ Rdi+1 and g : Rd → Rdi are the nonlinear
filters parameterized by ψi that are applied to the input.

In this paper we use a linear layer composed with a
sine function as filters: g

(
x;ψ(i+1)

)
= sinωx+ ϕ where

ωi ∈ Rd×d1 and ϕi ∈ Rd1 . Interestingly, one can show that
such a multiplicative filter network is equivalent to a linear
function of an exponential (in k) number of Fourier basis
functions.

RFFNets [10]. Random Fourier Features Networks lever-
age the Random Fourier Features technique, initially intro-
duced in machine learning, to approximate kernel meth-
ods efficiently. In the context of neural fields, RFFNet
uses random Fourier features to approximate the feature
maps resulting from the kernel functions. Instead of explic-
itly computing the kernel function, which can be computa-

tionally intensive for high-dimensional data, RFFNet em-
ploys random projections to map input data into a higher-
dimensional space. These random projections mimic the
feature space resulting from a kernel function, such as the
Gaussian or radial basis function (RBF) kernel. The expres-
sion of a RFFNet is

h(1) =
√
σW (0)x

h(2) = [sin(z(1)), cos(z(1))]

h(i) = ReLU
(
W (i−1)h(i−1) + b(i−1)

)
, i = 3, . . . , k − 1

fθ(x) =W (k)h(k) + b(k),

(3)

where W (0) ∈ Rd1×2 and
√
σ is also called the std and

is a hyperparameter that controls the frequency range of the
embedding layer.

Metrics for reconstruction quality. Peak Signal-to-
Noise Ratio (PSNR) is a widely used metric in signal pro-
cessing that measures the quality of a reconstructed or pro-
cessed signal concerning the original signal. It evaluates the
fidelity of the reconstructed signal by comparing the maxi-
mum possible power of the original signal to the power of
the difference between the original and reconstructed sig-
nals, expressed in decibels (dB). A higher PSNR value in-
dicates a smaller difference between the signals, suggesting
better reconstruction quality and less distortion.

The Intersection over Union, (IOU) is a metric often
used in shape reconstruction or object detection tasks within
computer vision. In the context of shape reconstruction,
the IOU measures the overlap between the predicted shape
(such as a bounding box, mask, or region) and the ground
truth shape in an image. It calculates the ratio between the
area of overlap and the area of union between the predicted
and ground truth shapes. Higher IOU values, closer to 1,
indicate a better match between the predicted and actual
shapes, signifying more accurate reconstruction or detec-
tion.

2. NeFs Initialization

SIRENs. As pointed out by the authors, if not initialized
properly, a SIREN results in poor reconstruction. We follow
the principled initialization scheme proposed by the authors
aimed at maintaining the activation distribution across the
network, ensuring that the initial output remains indepen-
dent of the number of layers. This can be done by sampling
the rows wi of the weight matrices from a uniform distribu-



Hyperparameter Range Range type

Initialization [True, False] Categorical
Weight decay [1e-8, 1e-2] Logarithmic
Learning rate [1e-5, 1e-1] Logarithmic
Number of steps [20, 200, 1000, 5000, 10000, 20000] Categorical

Table 1. Range of the optimization hyperparameters used for the
initial study.

tion:

wi ∼ U

(
−

c
√

fan in
,

c
√

fan in

)
. (4)

We refer to [9] for the derivations.

MFNs. The FourierNet has similar behavior to the SIREN
network, as sin activation functions are being used as filters.
The linear layers – i.e. W (i), b(i), i = 1, . . . , k − 1 – are
initialized with the same scheme as a SIREN. However, the
number of filters will now directly affect the final result, as
these are not acting sequentially upon each other, instead,
they are a multiplicative factor that affects each linear layer
element-wise. Therefore, the filters are initialized according
to the following:

wi ∼ U

−

√
s

k − 1
,

√
s

k − 1

 , (5)

where k−1 is the number of filters and s is an input scaling
constant. The latter is a hyperparameter that has a similar
effect to the std of the RFFNet, which we fix to 16 in our
experiments.

RFFNets. For the RFFNet, we choose to initialize the co-
efficients of the embedding using a standard Gaussian, such
that W (0) ∼ N (0, I). Then, the layers are initialized using
the uniform version of Kaiming He’s initialization:

wi ∼ U

−

√
6

fan in
,

√
6

fan in

 , (6)

which is a uniform distribution with variance of
2/fan in.

3. The Classifier Architectures
Our classifier network is inspired by the work of [7], where
the authors propose to use the computational graph of neural
networks and encode NeF representations with graph net-
works or transformers that are invariant to the permutation
symmetries present in the parameter space. We construct a
message-passing GNN where the biases of each NeF layer
correspond to node features, while the weights correspond

NeF Hyperparameter Range Range type

SIREN
Hidden dim. [8, 128] Logarithmic
Num. layers [3, 6] Linear
Ω0 [1, 1e2] Logarithmic

RFFNet
Hidden dim. [4,128] Logarithmic
Num. layers [3, 6] Linear√
σ [1e-2, 1e2] Logarithmic

MFN Hidden dim. [8, 128] Logarithmic
Num. filters [1, 6] Linear

Table 2. Range of the architecture hyperparameters used for the
initial study.

NeF Hyperparameter Range

SIREN

Hidden dim. [8, 32, 64]
Num. steps [5, 15, 25, 50, 75, 1000, 5000, 10000, 20000, 50000]
Learning rate 1e-3
Weight decay 0
Num. layers 3
Ω0 9

RFFNet

Hidden dim. [16, 32, 64]
Num. layers [5, 15, 25, 50, 75, 1000, 5000, 10000, 20000, 50000]
Learning rate 1e-4
Weight decay 0
Num. layers 5√
σ 1e-1

MFN

Hidden dim. [16, 32, 64]
Num. filters [5, 15, 25, 50, 75, 1000, 5000, 10000, 20000, 50000]
Learning rate 5e-3
Weight decay 0
Num. filters 4

Table 3. Parameters used during the second phase of the study.
These are chosen based on the results obtained during the first
phase.

to edge features. The authors also extend transformer ar-
chitectures, in particular PNA [3], and Relational Trans-
former [4]. In the benchmarks, the Transformer mentioned
is a Relational Transformer. The DWSNet is again a per-
mutation invariant architecture that has been proposed in
[8]. It is a composition of several different linear equivari-
ant layers, such as DeepSets [11], and pointwise nonlineari-
ties. To obtain an invariant classifier we simply compose an
equivariant DWSNet with an invariant linear layer, eventu-
ally follwd by a fully connected MLP for expressivity.

The GNN uses 4 steps of message passing, with a hidden
dimension of 64. The MLP used for the update function on
the nodes has 3 layers and 256 hidden dimension, while the
one used for the edges has 2 layers and 256 hidden dimen-
sion.

3.1. Ablation on the Architectures

To evaluate the ability of the models to overfit to the neu-
ral representations, we carried out an ablation study using
both an MLP and a GNN. The MLP uses linear layers with
ReLU activations and batch normalization [6]. The GNN is
the one previously described. For both, we decide to train
a small/base/large versions. For the MLP these correspond



0 100k 200k
Training step

0.0

0.5

1.0

Ac
cu

ra
cy

GNN

0 100k 200k
Training step

MLP
Train - Small
Train - Base
Train - Large
Val - Small
Val - Base
Val - Large

Figure 1. Training and test accuracy for three different-size GNN
and MLP models on a CIFAR10 neural dataset. Overfitting ability
is clear also for small capacities.

to 74k/116k/363k parameters, while for the GNN they cor-
respond to 500k/1.2M/1.5M parameters. In both cases, we
use a CIFAR10 dataset from our study and simply use the
neural representations as inputs. For the MLP the input is
the concatenated and flattened version of the weights and bi-
ases, while for the GNN it is the actual graph of the neural
field, where the connectivity is determined by the weights,
and node features by the biases. We show the training and
validation curves in Fig. 1. These show clear signs of over-
fitting, the training curve of the GNN slowly approaches
the maximum accuracy, while the one of the MLP does so
quickly. For both, the validation curves are almost identical
at all scales, likely due to capacity saturation.

4. Extent of the Study
In total, the study we carried out required performing
around 30k experiments, each corresponding to a new neu-
ral dataset being fit, and a classifier being trained on it. The
study was split into two phases.

In the initial phase, we searched a large space of hyper-
parameters using a smaller subset of the whole dataset, and
trained the classifier only for 10 epochs. In the initial hy-
perparameter exploration, we looked at optimization – see
Tab. 1 – and architecture hyperparameters – see Tab. 2. For
this exploration, we used the TPE sampler implemented in
Optuna [1, 2]. In short, this sampler uses the previous re-
sults to inform the choice of the best hyperparameters to use
next. Each experiment took between a few minutes to a few
hours to run, depending on the number of steps and the size
of the architecture. This was done for all 4 datasets and 3
models.

In the second phase, we ran a full grid search over the
initialization scheme, the number of steps, and the hidden
dimension of the NeFs. These were the most impactful
parameters according to the search performed in the first
phase. This grid search was performed for all datasets and
models. Refer to Tab. 3.



5. Additional Experiments
Follows additional experiments carried out on FourierNet (MFN) and RFFNet. The results align with what was found when
using SIREN, which suggests that these findings hold true across architectures. It is important to remember that, although
the architectures tested are different and employ different activation functions, they are still very similar to each other, as the
fundamental building block is fully connected feed-forward neural networks, with a small number of layers.

10 3 10 2 10 1

NMI

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

Initialization
Shared
Random

Neural
Dataset
Neural CIFAR10
Neural MNIST
Neural MicroImageNet
Neural ShapeNet

(a) RFFNet

10 3 10 2 10 1

NMI

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Initialization
Shared
Random

Neural
Dataset
Neural CIFAR10
Neural MNIST
Neural MicroImageNet
Neural ShapeNet

(b) MFN

Figure 2. Results of the test accuracy (↑) vs NMI (↑) using different initialization on 220 Neural Datasets created using different hidden
dimensions and the number of steps with RFFNets and MFNs. Different datasets are stylized using different markers. Shared initialization
leads to semantically structured NeF representation and, generally to better performance. Both RFFNet and MFN achieve the same
separation when using the shared initialization, as SIREN did.



NeF Neural dataset Initialization Test accuracy Gain (%)

RFFNet Neural MNISTs
Random 0.20±0.09

Shared 0.86±0.12 327.10

RFFNet Neural CIFAR10s
Random 0.16±0.02

Shared 0.31±0.05 102.33

RFFNet Neural MicroImageNets
Random 0.13±0.02

Shared 0.21±0.04 60.65

RFFNet Neural ShapeNets
Random 0.23±0.003

Shared 0.79±0.06 239.21

MFN Neural MNISTs
Random 0.23±0.08

Shared 0.91±0.07 304.58

MFN Neural CIFAR10s
Random 0.20±0.03

Shared 0.37±0.06 82.87

MFN Neural MicroImageNets
Random 0.16±0.02

Shared 0.23±0.06 46.39

MFN Neural ShapeNets
Random 0.42±0.19

Shared 0.89±0.03 109.83

Table 4. Average test accuracy (mean ± standard deviation) and percentage gain across 30 neural datasets trained using either shared
initialization or random initialization with different number of steps and hidden dimensions. The gains achieved with shared initialization
are consistent across all tested settings.

10 20
PSNR

0.175

0.200

0.225

0.250

Te
st

 a
cc

ur
ac

y

Neural
MicroImageNets

10 20
PSNR

0.25

0.30

0.35

Neural
CIFAR10s

0.25 0.50
IOU

0.75

0.80

Neural
ShapeNets

10 20 30
PSNR

0.4

0.6

0.8

Neural
MNISTs

(a) RFFNet

15 20
PSNR

0.25

0.26

0.27

0.28

Te
st

 a
cc

ur
ac

y

Neural
MicroImageNets

20 30
PSNR

0.325

0.350

0.375

0.400

Neural
CIFAR10s

0.4 0.6
IOU

0.84

0.86

0.88

0.90

0.92

Neural
ShapeNets

10 20
PSNR

0.75

0.80

0.85

0.90

0.95

Neural
MNISTs

(b) MFN

Figure 3. Results for the reconstruction quality (↑) vs test accuracy (↑) experiment. Similarly to SIRENs, for RFFNets and MFNs, by
fixing the NeF’s architecture we can more clearly see that there is a trade-off between visual quality and classification accuracy.



0.9 1.0
Off-grid PSNR/PSNR

0.10

0.15

0.20

0.25

Te
st

 a
cc

ur
ac

y

Neural MicroImageNets

0.6 0.8 1.0
Off-grid PSNR/PSNR

0.25

0.30

0.35

0.40
Neural CIFAR10s

0.9995 1.0000
Off-grid IOU/IOU

0.75

0.80

0.85

Te
st

 a
cc

ur
ac

y

Neural ShapeNets

0.50 0.75 1.00
Off-grid PSNR/PSNR

0.4

0.6

0.8

Neural MNISTs

1 2 3 4 5
Num. of steps 1e6

(a) RFFNet

0.98 1.00 1.02
Off-grid PSNR/PSNR

0.10

0.15

0.20

0.25

0.30

Te
st

 a
cc

ur
ac

y

Neural MicroImageNets

0.8 1.0
Off-grid PSNR/PSNR

0.2

0.3

0.4

Neural CIFAR10s

0.9990 0.9995 1.0000
Off-grid IOU/IOU

0.850

0.875

0.900

0.925

Te
st

 a
cc

ur
ac

y

Neural ShapeNets

0.6 0.8 1.0
Off-grid PSNR/PSNR

0.8

0.9

Neural MNISTs

0.5 1.0 1.5 2.0
Num. of steps 1e6

(b) MFN

Figure 4. We fit 220 neural datasets using different hidden dimensions and number of steps while keeping the same shared initialization.
Similarly to SIRENs, for MFNs and RFFNets the ratio of off-grid reconstruction quality and in-grid reconstruction quality can be used to
form a heuristic that correlates with high test accuracy. The results across different architectures may be more subtle because of the tuning
of different parameters that were not explored here, such as the std in the RFFNet or the input scaling s for the MFN.



References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter

optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 2623–2631, 2019. 3

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. Advances in neural
information processing systems, 24, 2011. 3

[3] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood aggregation for graph
nets. In Advances in Neural Information Processing Systems (NeurIPS), 2020. 2

[4] Cameron Diao and Ricky Loynd. Relational attention: Generalizing transformers for graph-structured tasks. In International Con-
ference on Learning Representations (ICLR), 2023. 2

[5] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks. In International Conference on
Learning Representations, 2020. 1

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
International conference on machine learning, pages 448–456. pmlr, 2015. 2

[7] Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves, Cees G. M. Snoek, and David W.
Zhang. Graph Neural Networks for Learning Equivariant Representations of Neural Networks. In 12th International Conference on
Learning Representations (ICLR), 2024. 2

[8] Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equivariant architectures for learning
in deep weight spaces. arXiv preprint arXiv:2301.12780, 2023. 2

[9] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural representations with
periodic activation functions. Advances in neural information processing systems, 33:7462–7473, 2020. 1, 2

[10] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,
Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. Advances
in Neural Information Processing Systems, 33:7537–7547, 2020. 1

[11] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J Smola. Deep sets.
Advances in neural information processing systems, 30, 2017. 2


	. NeFs Architectures
	. NeFs Initialization
	. The Classifier Architectures
	. Ablation on the Architectures

	. Extent of the Study
	. Additional Experiments

