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A. Ablation Experiments
A.1. Guidance Strength γ

We ablate over guidance strength parameter γ for both the
distribution guidance and sample guidance in Fig. 1. In-
creasing γ reduces the bias (better FD) at the cost of infe-
rior image quality (increased FID). Guidance strength 1500
achieved a good tradeoff between image quality and balanc-
ing attributes. Further, as compared to sample guidance, the
distribution guidance achieves a better tradeoff for all the
guidance strengths.

A.2. Data efficiency of h-space classifiers

We ablate over the number of training examples used to
train the h-space classifiers in Fig. 2. Specifically, we train a
gender-attribute classifier in image space and h-space using
the same number of images. We use ResNet50 [1] as the
image classifier and a linear head on top of the h-features
as the h-space classifier. We pass the estimate x̂0 of the
clean image at timestep t to the image classifier to obtain
the prediction. For h-space classification, we pass the ht to
the linear head. The h-space classifiers are extremely data
efficient and can achieve > 90% accuracy for most of the
time-steps, even when trained with just 500 training exam-
ples. This shows the efficacy of guidance in the h-space,
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Figure 1. Ablation over guidance strength γ

which can be done with only a few hundred training exam-
ples.
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Figure 2. Ablation over the number of training examples for classi-
fiers. h-space classifiers achieve excellent performance even with
only 200 training examples. In contrast, ResNet50 classifiers re-
quire a large number of images to achieve similar performance.

A.3. H-space classifier architectures

We ablate over the different classifier architectures used for
the classification in the h-space. We use a linear layer, an
MLP and a small CNN architecture. The results are pre-
sented Tab. 1. We report the average test accuracy over 50
time steps, network parameters, and guidance time for gen-
erating a batch of images. With comparable accuracy, the
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Table 1. Ablation over the classifier architecture for h-space clas-
sification

Classifier Avg. accuracy Guidance time ↓ # Parameters
Linear 0.921 1.0x 3.2M
CNN 0.908 2.5x 74M
MLP 0.952 2.0x 200M

linear layer has lesser parameters and performs guidance
faster, and hence is used as the default classifier.

B. Multi-attribute Debiasing

In this section, we generate balanced subgroups for a com-
bination of the multiple attributes. We consider jointly bal-
ancing 2 and 3 sensitive attributes across all subgroups.
Specifically, we explore the following settings: 1) Gen-
der + Race: 0.25 black males, 0.25 black females, 0.25
white males, 0.25 white females 2) Gender + Eyeglasses:
0.25 males with eyeglasses, 0.25 females with eyeglasses,
0.25 males without eyeglasses and 0.25 females without
eyeglasses. 3) Gender + Race + Eyeglasses: 0.125 for
all the 8 subgroups formed. The results are reported in
Tab. 2 where we compute the FD score with a balanced ref-
erence set and FID with the original CelebA-HQ [2] dataset.
The FID score quantifies the visual quality, whereas the FD
score accounts for the bias in the generations, as explained
in Sec.4.1 (main paper). We do not use a reference set to
compute FID as balancing across sub-groups leads to con-
siderably less number of samples in the reference set.

Table 2. Balancing attribute subgroups for fair generation
Gender + Race Gender + Eyeglasses Gender + Race + Eyeglasses

Method FD FID FD FID FD FID

Random Generation 0.684 49.45 0.636 49.45 0.768 49.45
Sample Guidance 0.436 45.49 0.3 47.41 0.496 47.83

Distribution Guidance 0.224 45.37 0.2 45.92 0.408 43.94

B.1. Generalization to imbalanced distributions

Here, we present results for generating an imbalanced dis-
tribution for the subgroups by providing a skewed reference
distribution. Such a setting is helpful in data augmentation
for under-represented subgroups as shown in Sec.4.8 in the
main paper. We take the following two settings: 1) Gen-
der + Eyeglasses: 0.40 males with eyeglasses, 0.10 males
without eyeglasses, 0.40 females with eyeglasses, and 0.10
females without eyeglasses. 2) Gender + Race: 0.40 black
males, 0.10 white males, 0.40 black females and 0.10 white
females. These two configurations are contrary to the orig-
inally generated distribution as blacks and eyeglasses are
minority groups. The results are provided in Tab. 3, where
we report FD with a reference set and FID score with the
CelebA-HQ dataset to evaluate bias and generation quality.

Table 3. Generating imbalance distribution across subgroups to
generate more images for under-represented groups.

Gender + Eyeglasses (0.40,0.10,0.40,0.10) Gender + Race (0.40,0.10,0.40,0.10)

Method FD FID FD FID

Random Generation 1.1 49.45 1.444 49.45
Sample Guidance 0.472 48.66 0.756 62.48

Distribution Guidance 0.38 47.68 0.464 45.51

C. Debiasing text-to-image Diffusion Model
C.1. Social biases in facial attributes

We extend our experiments with Stable diffusion (SD) [5],
previously outlined in Sec. 4.6 (main paper) by implement-
ing our distribution guidance technique for debiasing across
other (race and age) attributes. We observe that SD genera-
tions with a neutral prompt, such as ‘a photo of a firefighter’
or ‘a photo of a doctor’, are images of people who are pre-
dominantly of white origin. Similarly, when prompted with
‘a photo a person’, SD majorly generates images of young
people. We attempt to mitigate these biases with the pro-
posed distribution guidance method following Sec.4.6. The
qualitative results for the same are provided in Fig. 3. As ev-
ident from the results, our method achieves fairness across
race and age attributes using the same neutral prompts. We
present quantitative results in Tab. 4, where our method
achieves superior FD scores computed using CLIP attribute
classifier as explained in Sec.D.1.

C.2. Background bias in bird generation

Our method is applicable for mitigating biases that are not
social as well (i.e. spurious correlations). WaterBirds [6]
is a widely used synthetic dataset for demonstrating spu-
rious correlations, which consist of images of birds across
different backgrounds. The images of birds (landbirds and
waterbirds) are collated from the CUB dataset [8], and the
backgrounds from the Places dataset [9]. The majority of
the waterbirds (sea birds) are affixed with a water back-
ground, and landbirds with land backgrounds. We gener-
ate a dataset of 10K images using SD with prompts ‘photo
of a land background’ and ‘photo of a water background’.
Additional negative prompts like - ocean, water, sea, shore,
river are added to generate pure land images. Similarly neg-
ative prompts land, mountain, sand, forest, rocks are added
to generate pure water images. Next, we train a background
h-space classifier for guidance. When queried with neutral
prompts for landbird and waterbird, SD follows the spurious
correlation in its generation. Specifically, when prompted
for a landbird - ‘a photo of a crow’, SD predominantly gen-
erates a crow with land as the background, whereas when
prompted for a waterbird - ‘a photo of a duck’, SD generates
images with water in the background. When we apply dis-
tributional guidance, an equal number of images across both
backgrounds are generated irrespective of the bird type. See
Fig. 4 for qualitative results.
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Figure 3. Debiasing results on stable diffusion for race and age attribute. We present random samples generated by the original stable
diffusion model and with distribution guidance. a) Balancing across race involving different professions e.g. firefighter, doctor. b) Balanc-
ing across age attribute for neutral prompts.

Table 4. Balancing race for multiple professions and age
Method Race-Doctor Race-Firefighter Age

Random Generation 0.356 0.423 0.488
Distribution Guidance 0.191 0.186 0.194

D. Implementation details

D.1. h-space classifiers

Training data. We created a paired training of h-space
features and attribute labels Dh

clf for training h-space at-
tribute classifiers. We start with CelebA-HQ [3] dataset
Dunf . Next, we used an off-the-shelf image space attribute
classifier to obtain attribute labels for D. We used CLIP
as a classifier for both gender and race attributes as race
labels are not present in CelebA-HQ dataset. Specifically,
we pass Dunf to the CLIP[4] image encoder and obtain its
similarity with text prompts - ‘a male’ and ‘a black per-
son’. The highest and lowest similarity images are then
filtered to create a labeled attribute dataset D. We used
|D| = 2000, where 1000 images are for the positive class,
and others are for the negative class unless mentioned oth-
erwise. For eyeglass attribute, we used ground truth labels
from the CelebA-HQ dataset, as the predictions from CLIP
were inaccurate. We then embed D into the h-space repre-
sentation using DDIM[7] inversion to obtain labeled dataset
Dh

clf to train the classifiers.
Model architecture. The h-space classifiers are imple-
mented as a single linear layer for each diffusion timestep
t. We used DDIM inversion with T = 49 timesteps and
obtain Hi = {hi

t}t=49
t=0 as a set of 49 h-vectors for each im-

age i. As each classifier is linear with two output neurons
(positive/ negative class), they can be jointly represented as

a single fully connected layer with 2T output neurons.
Optimization. We train the h-space classifiers with the
following hyper-parameters - batch size 64, learning rate
0.001, and for 5 epochs on a single NVIDIA A5000 gpu.
The overall training time for a single attribute classifier is
484.37s.

D.2. Evaluation Metrics

We created a reference set Dref of 5K images that follow
the reference attribute distribution pa

ref , using the attribute
labels from CelebA-HQ [2]. The ground truth labels were
used for gender and eyeglasses from CelebA-HQ. For race,
however, as the labels are not available, they were obtained
from CLIP as discussed in Sec. D.1. To compute FID, we
use Dref to compute the reference statistics. For FD, we
compute the discrepancy of the predicted attribute distribu-
tion from the reference distribution following Sec.4.1. We
use the resnet-18 [1] architecture to implement the attribute
classifiers trained on CelebA-HQ [2]. This set of classifiers
needs to be different from the one used to obtain Dh

clf for
fair evaluation.
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Figure 4. Debiasing results on stable diffusion for backgrounds
while generating birds. The proposed Distribution Guidance
can balance the number of birds in various backgrounds.
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