
Supplementary Material for
Depth Prompting for Sensor-Agnostic Depth Estimation

A. Zero-shot Inference on Commercial Sensors.

VOID [6] provides RGB-D images with a resolution of
640×480, captured using a RealSense D435i. We utilize
sparse depth images with about 150, 500, and 1500 depth
points as input, which are estimated feature points by the
SLAM system, VIO [3]. We evaluate the adaptability of
both our method and other SoTA approaches across a range
of density levels to assess their versatility, and conduct a
quantitative experiment on the test set provided by [6]. As
shown in Fig. A and Tab. A, while other methods struggle
to infer depth maps, our method consistently shows compa-
rable depth map quality, which indicates the efficacy of our
approach as a solution for sensor bias problems.

SUN RGB-D [5] contains RGB-D images from four dif-
ferent sensors, offering a diverse range of scenes and sensors,
e.g., Intel RealSense 3D Camera, Asus Xtion LIVE PRO,
Microsoft Kinect V1 and V2. The input images are resized
to 320×240, and the center cropped to 304×228. The total
of 1000 scenes, where each sequence is roughly 20 seconds
long and annotated every 0.5 seconds, is officially split into
train/val/test set with 700/150/150 scenes. Using this dataset,
we demonstrate the versatility of our method across different
sensors. According to Fig. B and Tab. A, other SoTA meth-
ods suffer from reconstructing depth maps in areas where the
raw depth data is missing. In contrast, our method effectively
compensates for the missing parts.

Apple ARKit [4] is Apple’s Augmented Reality (AR)
development platform for iOS mobile devices. The Apple
iPhone/iPad Pro devices use depth derived from RGB to re-
cover scene details lost in the sparse LiDAR measurements.
It provides high-resolution RGB images at 1440×1920 pix-
els, low-resolution depth maps at 192×256 pixels, and the
corresponding confidence map. We compare the depth map
output from the ARkit and the inference from our method us-
ing the sparse depth. For fair comparison, we first mask out
unreliable depth information with a lower confidence score,
and then reconstruct scene depths with the same resolution
of ARKit. Fig. C showcases that our method achieves better
results than ARKit results. We suggest that the limited sen-
sor range of Apple’s LiDAR often leads to bad predictions,
typically missing parts of the far region. However, thanks
to the foundation model integrated into our framework, our
approach successfully overcomes this limitation, yielding
high-quality depth maps even in distant areas.
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Figure A. Zero-shot inference on VOID dataset. Since it offers
various inputs consisting of 1500, 500, and 150 feature points, we
can validate our method’s robustness in handling sensor biases.
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Figure B. Zero-shot inference on SUN-RGBD consisting of various
sensor types, e.g., Microsoft Kinect (a),(b) V1&V2, (c) Asus Xtion,
and (d) Intel Realsense.

nuScenes [1] offers detailed point clouds captured from
a 32-Line LiDAR, along with high-resolution images of
1600×900 pixels from six cameras on the vehicle. For infer-
ence using models pretrained on the KITTI dataset [2], we
first perform first center cropping of the images to a size of
352×1600 pixels, and then resizing them to 240×1216 pix-
els. As shown in Fig. D, our method constructs high-fidelity
depth maps in the new sensor across both day and night
conditions. Notably, our model, which is initially trained on
64-Line Velodyne LiDAR, shows exceptional performances
when an unseen LiDAR sensor is applied at inference time.
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VOID 150 VOID 500 VOID 1500 SUN-RGBD
RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1

CSPN 1.0747 0.7991 0.2745 0.7695 0.4776 0.4730 0.4046 0.2121 0.7286 0.5552 0.2464 0.8468
NLSPN 0.6964 0.5063 0.3572 0.4672 0.2853 0.5618 0.2563 0.1339 0.7801 0.5910 0.2665 0.8441

CompletionFormer 0.8445 0.6976 0.2030 0.6090 0.4447 0.3541 0.3430 0.2158 0.5794 0.9615 0.8574 0.0564
Ours 0.1955 0.1358 0.7243 0.1637 0.1031 0.7457 0.1580 0.098 0.7582 0.3962 0.2710 0.8402

Table A. Quantitative results on VOID and SUN-RGBD dataset.
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Figure C. Zero-shot inference on Apple LiDAR. Due to the scanning range of Apple Lidar, the results have limitations in representing the
depth map for distant regions. Our method mitigates this issue by leveraging the knowledge from our foundation model.
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Figure D. Zero-shot inference on nuScenes dataset. We test the versatility of the proposed method in other outdoor datasets. Despite sensor
variations, our method demonstrated stable generalization performance, unlike other SoTA methods that suffer from sensor bias issues.
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