
Enhancing Intrinsic Features for Debiasing via Investigating
Class-Discerning Common Attributes in Bias-Contrastive Pair

Supplementary Material

This supplementary material offers further analysis of
our approach, additional experimental results, the details
of the datasets and implementation, limitations, and future
work. Sec. A and Sec. B provide the analysis of the bias-
negative (BN) score as a loss weight and samples with neg-
ative BN score, respectively. Sec. C analyzes the effect of
BC samples in DBN on debiasing performance. Also, Sec. D
compares the recent sample selection methods with ours.
Moreover, Sec. E and Sec. F present additional qualitative
results regarding the guidance and additional quantitative
results, respectively. Sec. G and Sec. H provide the details
about the dataset and implementation. Lastly, Sec. I dis-
cusses the limitations and future work.

A. Additional analysis of the BN score as a loss
weight
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Figure 1. The distributions of fb’s classification loss of samples in
DBN

cand. The red and blue lines denote the losses of BA and BC sam-
ples, respectively. The dotted and solid lines indicate the losses at
the early and later stages of the training, respectively. Best viewed
in color.

As described in Sec. 3.4 in the main paper, we utilize
the BN score of xBN (i.e., s(xBN)) to reweight the guidance
loss Lguide sim and the BN loss LBN. The BN score as a
loss weight is designed to upweight the losses when bias-
conflicting (BC) samples are selected as xBN, which further
encourages our IE weight to enhance the intrinsic features.
For verification, we present that the BN score has a much
larger value on the BC samples compared to bias-aligned
(BA) samples during the training in Fig. 2 in the main paper.

Since s(xBN) has a larger value when the current fb loss
of xBN is larger than that of the early stage of training,

the results imply that the fb loss of BC samples largely in-
creases as training proceeds compared to BA samples.

To further verify this, we present fb’s classification loss
of samples in DBN

cand during the training in Fig. 1. The
BFFHQ dataset [6] with a bias severity of 1% is used for
the analysis. In Fig. 1, the dotted lines denote the distribu-
tion of fb’s classification loss at the early stage of training
(1K-th iteration), and the solid lines indicate that of the later
stage of training (50K-th iteration). The results show that
the fb loss of BC samples (blue lines) largely increases at
the later stage of training compared to the early stage, un-
like BA samples (red lines). This demonstrates that the BN
score as a loss weight can effectively upweight the training
losses when BC samples are chosen as xBN.

B. Samples having negative BN score

Figure 2. The examples of samples that have negative BN scores
at the later stage of training.

As mentioned in Sec. 3.2 in the main paper, we further
filter out the samples with negative BN scores from DBN

cand to
mainly exploit the BC samples as xBN. Here, we expect that
the samples with negative BN scores are mostly BA sam-
ples. To investigate the samples with negative BN scores,
we chose the samples that were erroneously incorporated
into DBN

cand initially but excluded at the later stage of training
(i.e., 50K-th iteration), exhibiting negative BN scores. This
process is repeated five times, and we visualize the samples
chosen more than three times in Fig. 2. We use the BFFHQ
dataset with a 1% bias severity for the experiment.

We observe that the samples with negative BN scores in
DBN

cand are mostly BA samples. As shown in the figure, while
the samples obviously contain bias attributes (i.e., features
representing female or male), the samples mostly have ex-
treme shade, blur, saturation, or unusual makeup, exhibit-
ing non-typical appearance. Although the bias attributes
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(a) Waterbirds (b) BAR

Figure 3. Additional visualization results of the spatial guidance using (a) Waterbirds and (b) BAR dataset. Given bias-contrastive pairs, x
and xBN, E(z) indicates the regions originally focused on by fd and IE(z) shows the regions highlighted by our IE weight.

are known to be easy to learn, the non-typical appearance
prevents fb from detecting such bias attributes in the early
stage of training. In Sec. 4.5 of the main paper, we verify
that employing such BA samples as xBN largely degrades
the debiasing performance by allowing the bias attributes
to be included in the common features between x and xBN.
Our BN score effectively alleviates this issue by filtering out
such BA samples from DBN

cand.

C. Importance of BN sample selection
We analyze the effect of the BC sample ratio in DBN

on debiasing performance. We measure the accuracy us-
ing the BFFHQ dataset with a 1% bias severity by vary-
ing the number of BA and BC samples in DBN. Ta-
ble 1 shows that higher accuracy is achieved for more
BC samples and a lower ratio of BA to BC samples in
DBN. Overall, our method constantly shows performance

#BC in DBN/#BC in D 0.1 0.5 1.0 1.0 1.0 1.0 1.0
#BA in DBN/#BC in DBN 0.0 0.0 0.0 0.1 1.0 2.0 10.0

Accuracy 75.84 78.12 81.40 80.24 77.48 75.48 70.90

Table 1. Importance of xBN selection.

gain, except for the last column ({#BC in DBN/#BC in D,
#BA in DBN/#BC in DBN}-{1.0, 10.0}). It is crucial not to
select too many BA samples as xBN.

D. Comparison to recent sample selection
methods

Our BN score is designed to further filter out BA
samples in DBN

cand, improving debiasing performance
(Sec. 4.5 in the main paper). We compare BC
sample selection in recent methods with ours using
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Figure 4. Additional comparison of the region focused by a debiased model trained with and without our method. We compare Grad-CAM
results on the test set of (a) Waterbirds and (b) BAR.

BFFHQ with a 1% bias severity. Let S be a set
of samples identified as BC samples from training data
D. {#BC in S/#BC in D, #BA in S/#BC in S} is {75.63,
10.18}-BE [8], {27.29, 4.32}-DCWP [10], and {50.0,
0.89}-Ours, respectively. Our method has the least num-
ber of BA compared to BC samples in S while preserving
half of the total BC samples.

E. Additional qualitative results

E.1. Visualization of the guidance during training

In addition to Fig. 3 of the main paper, we provide sup-
plementary qualitative results that present the features that
the current model fd focuses on (i.e., E(z)) and the features

emphasized by the guidance (i.e., IE(z)) during the training
in Fig. 3. We use the Waterbirds and BAR datasets with a
bias severity of 1% for the analysis. We train fd during 10K
iterations and obtain the visual explanation map E(z) for
the ground-truth label using Grad-CAM [12]. The min-max
normalization is applied to the values of E(z) and IE(z) for
visualization. We intentionally select the BA sample and
BC sample as x and xBN, respectively, to compose a bias-
negative pair.

As shown in Fig. 3, our IE weight (i.e., IE(z)) appropri-
ately emphasizes the regions of the intrinsic features while
E(z) shows that the current model fd relies on the bias
attributes for prediction. For example, in the Waterbirds
dataset, IE(z) properly enhances the intrinsic features of a



bird such as wings, a body, or a neck, while E(z) highlights
the background features such as the land, the forest or the
water. Also, in the BAR dataset, IE(z) emphasizes the arm
throwing the javelin, the motion of a person vaulting, climb-
ing, or diving, while the current fd mainly focuses on the
biased features such as the playing field, the sky, the moun-
tain, or the water. These results verify the validity of our
IE weight IE(z) as guidance for emphasizing the intrinsic
features in x that are under-exploited yet.

E.2. Effect of intrinsic feature guidance on debias-
ing

We present an additional qualitative analysis regarding the
effectiveness of the intrinsic feature guidance to supple-
ment Fig. 4 in the main paper. Fig. 4 illustrates the Grad-
CAM [12] results of the model trained with and without our
method. Here, the model trained without our method is the
same as LfF+BE [8]. We train the models with the Water-
bids and the BAR datasets with a bias severity of 1% and
apply the Grad-CAM to the test samples for visualization.
The highlighted regions indicate the features that the model
mainly employs for prediction.

Fig. 4 (a) shows that our approach properly focuses on
the intrinsic features of the bird (e.g., wings, a beak, or feet),
while the model trained without our guidance mostly con-
centrates on the bias features (e.g., the water or trees). For
the BAR dataset in Fig. 4 (b), our model principally exploits
the action of a person (e.g., fishing, vaulting, or throwing)
or the racing car for prediction, while the model without our
guidance focuses on the backgrounds (e.g., the playing field
or the water). The results demonstrate the effectiveness of
our method in guiding the model to learn intrinsic features.

F. Additional quantitative results
F.1. Quantitative results with standard deviations

In Table 1 of our main paper, we report the quantitative
comparison results with classification accuracies on the test
set which are averaged across five independent experiments
with different random seeds. We additionally provide the
standard deviations of the classification accuracies in Ta-
ble 2 and Table 3. Each table shows the results of the syn-
thetic dataset (i.e., Waterbirds) and the real-world dataset
(i.e., BFFHQ and BAR), respectively. Since the BAR
dataset lacks explicit bias labels, approaches such as LNL
and EnD that necessitate explicit bias labels are not applica-
ble to the BAR dataset. The baseline results for the BFFHQ
and the BAR dataset are from the results reported in BE [8]
except for DCWP [10].

F.2. Comparison to recent baseline

Our primary contribution lies in providing the model with
explicit spatial guidance for intrinsic features by examin-

ing features that commonly appear in bias-contrastive pairs.
The intrinsic feature exists in generally appearing features
within a class, however, this property has not been tackled to
provide intrinsic feature guidance in prior studies to the best
of our knowledge. While recent debiasing approaches aim
to encourage the model to learn intrinsic features, they fail
to directly indicate where the model should focus to learn
the features.

For instance, MaskTune [1] expects the model to learn
intrinsic features by fine-tuning the model with the data
whose already-explored area is masked out using Grad-
CAM. However, simply exploring the unmasked area can-
not inform the model where exactly the intrinsic features
are located. In this case, the model may rather focus on
non-intrinsic features during the fine-tuning. We experi-
ment on real-world datasets with a 1% bias severity: {58.00,
69.42}-MaskTune and {77.56, 75.14}-Ours for {BFFHQ,
BAR}. Ours achieves better debiasing performance by pro-
viding explicit spatial guidance for intrinsic features based
on common features in bias-contrastive pairs.

A recent pair-wise debiasing method X 2-model [16] en-
courages the model to retain intra-class compactness using
samples generated via feature-level interpolation between
BC and BA samples. However, X 2-model does not inform
the model where the intrinsic features are located in the in-
terpolated features. Simply making samples closer to the
interpolated samples does not assure the model to focus on
the intrinsic features. In contrast, our method directly en-
courages the model to focus on the area of the intrinsic fea-
tures.

Also, we conduct a quantitative comparison to the re-
cently proposed debiasing approach, DCWP [10], in Ta-
ble 3. We use real-world datasets, BFFHQ and BAR, with
various bias severity. For a fair comparison, we utilize
ResNet18, which is the same architecture as ours. The Im-
ageNet pretrained weight is employed only for the BAR
dataset. The results demonstrate the superiority of our
method over the DCWP, where ours provides the model
with explicit guidance for intrinsic features for debiasing,
unlike DCWP.

F.3. Worst accuracy between the accuracy of BA
and BC samples in Waterbirds

To further analyze our model’s performance on the Water-
birds dataset, we measure the accuracy of BA and BC sam-
ples separately, where the class accuracy values are aver-
aged. Then, we report the worst accuracy between them
in Table 4. The results show that ours achieves the highest
worst accuracy compared to other baselines.

G. Detailed description of datasets
We utilize Waterbirds [11], BFFHQ [6], and BAR [9]
dataset. First, the Waterbirds dataset is composed of two



Method Waterbirds

0.5 1.0 2.0 5.0

Vanilla [3] 57.41 ±0.74 58.07 ±1.00 61.04 ±0.55 64.13 ±0.14

HEX [15] 57.88 ±0.83 58.28 ±0.67 61.02 ±0.48 64.32 ±0.62

LNL [5] 58.49 ±0.81 59.68 ±0.78 62.27 ±0.91 66.07 ±1.15

EnD [13] 58.47 ±0.97 57.81 ±1.04 61.26 ±0.54 64.11 ±0.52

ReBias [2] 55.44 ±0.24 55.93 ±0.66 58.53 ±0.52 62.14 ±1.03

LfF [9] 60.66 ±0.77 61.78 ±1.53 58.92 ±2.93 61.43 ±1.92

DisEnt [7] 59.59 ±1.67 60.05 ±0.82 59.76 ±1.26 64.01 ±1.36

LfF+BE [8] 61.22 ±2.54 62.58 ±1.12 63.00 ±1.18 63.48 ±0.56

DisEnt+BE [8] 51.65 ±1.45 54.10 ±1.04 53.43 ±1.42 54.21 ±1.36

Ours 63.64 ±1.63 65.22 ±0.95 65.23 ±1.06 66.33 ±1.42

Table 2. Comparison to the baselines. We measure the classification accuracy on test sets of the Waterbirds dataset with different bias
severities. The best accuracy values are in bold. Results with standard deviations are provided in the Supplementary.

Method BFFHQ BAR

0.5 1.0 2.0 5.0 1.0 5.0

Vanilla [3] 55.64 ±0.44 60.96 ±1.00 69.00 ±0.50 82.88 ±0.49 70.55 ±0.87 82.53 ±1.08

HEX [15] 56.96 ±0.62 62.32 ±1.21 70.72 ±0.89 83.40 ±0.34 70.48 ±1.74 81.20 ±0.68

LNL [5] 56.88 ±1.13 62.64 ±0.99 69.80 ±1.03 83.08 ±0.93 - -
EnD [13] 55.96 ±0.91 60.88 ±1.17 69.72 ±1.14 82.88 ±0.74 - -
ReBias [2] 55.76 ±1.50 60.68 ±1.24 69.60 ±1.33 82.64 ±0.64 73.04 ±1.04 83.90 ±0.82

LfF [9] 65.19 ±3.23 69.24 ±2.07 73.08 ±2.70 79.80 ±1.09 70.16 ±0.77 82.95 ±0.27

DisEnt [7] 62.08 ±3.89 66.00 ±1.33 69.92 ±2.72 80.68 ±0.25 70.33 ±0.19 83.13 ±0.46

LfF+BE [8] 67.36 ±3.10 75.08 ±2.29 80.32 ±2.07 85.48 ±2.88 73.36 ±0.97 83.87 ±0.82

DisEnt+BE [8] 67.56 ±2.11 73.48 ±2.12 79.48 ±1.80 84.84 ±2.11 73.29 ±0.41 84.96 ±0.69

DCWP [10] 64.08 ±1.08 67.44 ±2.87 75.24 ±1.73 85.00 ±0.94 69.63 ±0.85 81.89 ±0.68

Ours 71.68 ±1.74 77.56 ±1.24 83.08 ±1.69 87.60 ±1.68 75.14 ±0.82 85.03 ±0.64

Table 3. Comparison to the baselines. We measure the classification accuracy on test sets of the BFFHQ and BAR datasets with different
bias severities. The best accuracy values are in bold. The hyphen mark (-) means it is not applicable. Results with standard deviations are
provided in the Supplementary.

classes of bird images and has background bias. In the train-
ing set, the waterbirds are mostly with the water background
and the landbirds are with the land background. The num-
ber of BA samples and that of BC samples are balanced
in the test set. By following Sagawa et al. [11], we uti-
lize two datsets, the Caltech-UCSD Birds-200-2011 (CUB)
dataset [14] and the Places1 dataset [18], to construct the
Waterbirds dataset. The bird images are segmented from the
CUB dataset, and the segmented birds are combined with
the background images from the Place dataset. We employ
the code released by Sagawa et al. [11]2 for constructing
the dataset. As mentioned in the repository, a few land-
birds (Eastern Towhees, Western Meadowlarks, and West-

1CC BY
2https://github.com/kohpangwei/group DRO

ern Wood Pewees) in the original dataset are incorrectly la-
beled as waterbirds. Therefore, we correct their labels to
landbirds for the experiments.

The BFFHQ is initially presented by Kim et al. [6]
and constructed by modifying the FFHQ dataset 3. In the
BFFHQ, the bias attribute is the gender and the intrinsic at-
tribute is the age. Specifically, most of the young people are
female, and most of the old people are male in the training
dataset.

Lastly, the BAR dataset is introduced by Nam et al. [9].
The dataset contains six action classes (i.e., Climbing, Div-
ing, Fishing, Vaulting, Racing, Throwing) and each class is
biased to a certain background (i.e., RockWall, Underwater,
WaterSurface, Sky, APavedTrack, PlayingField). In the test

3BY-NC-SA 4.0



BS Vanilla [3] HEX [15] LNL [5] EnD [13] ReBias [2] LfF [9] DisEnt [7] LfF+BE [8] DisEnt+BE [8] Ours

0.5 24.08 ±1.56 28.20 ±3.07 26.08 ±1.64 28.29 ±3.53 27.00 ±1.10 56.22 ±6.07 38.07 ±11.01 55.15 ±2.78 36.60 ±10.88 59.12 ±3.67

1.0 24.78 ±2.45 26.32 ±2.90 29.72 ±3.45 25.69 ±2.41 27.95 ±1.56 59.07 ±3.40 47.02 ±7.26 55.53 ±1.60 28.35 ±4.17 63.05 ±1.97

2.0 34.39 ±2.24 32.12 ±2.89 33.92 ±1.94 32.94 ±1.48 32.16 ±0.76 53.07 ±6.74 44.93 ±8.54 52.91 ±2.62 31.08 ±6.01 61.71 ±4.94

5.0 38.34 ±1.05 39.08 ±0.92 43.22 ±1.94 40.91 ±1.11 39.72 ±1.11 58.05 ±2.37 52.96 ±6.33 48.48 ±3.72 37.92 ±6.47 58.60 ±3.32

Table 4. The worst accuracy between the accuracy of BA and BC samples in the Waterbirds dataset. BS is bias severity.

Figure 5. Visualization of datasets used in the experiments. A group of three columns represents each class for (a) Waterbirds-{Landbird,
Waterbird} and (b) BFFHQ-{Young, Old}, and each column of (c) BAR-{Climbing, Diving, Fishing, Vaulting, Racing, Throwing} repre-
sents a distinct class. The samples above the dashed line are bias-aligned samples and the below ones are bias-conflicting samples.

set, such correlations do not exist. For the experiments, we
use the BFFHQ dataset and BAR dataset released by Lee et
al. [8]4. The examples of the BA samples and BC samples
in each dataset are shown in Fig. 5.

H. Implementation details
Following the previous studies [7–9], we utilize
ResNet18 [3] for the biased model fb and the debi-
ased model fd. Also, f emb

d indicates the subnetwork before
the average pooling layer, and f cls

d consists of an average
pooling layer and a linear classifier that outputs logits,
where fd(x) = f cls

d

(
f emb
d (x)

)
. Before training, fb and

fd are initialized with the ImageNet pretrained weight for
the BAR dataset, while we randomly initialize the models
for the other datasets. This is because the size of the BAR
dataset is extremely small compared to the others [8].

During training fd, we employ the sample reweighting
value w(x) termed as relative difficulty score [9], as men-
tioned in Sec. 3.4 in the main paper. w(x) is calculated as
follows:

w(x) =
LCE(fb(x), y)

LCE(fb(x), y) + LCE(fd(x), y)
. (1)

This score assigns a high weight to the BC samples and
a low weight to the BA samples. This encourages fd to
mainly learn intrinsic features by emphasizing BC samples
with w(x).

4https://github.com/kakaoenterprise/BiasEnsemble

The models are trained for 50K iterations with a batch
size of 64. The horizontal flip and a random crop with a
size of 224 are used for data augmentation during the train-
ing. All the models are trained with the Adam optimizer.
The learning rate is set as 1e-4 for the Waterbirds and the
BFFHQ dataset, and 1e-5 for the BAR dataset. The hyper-
parameters of αl, αs, and τ are set as 0.1, 0.9, and 2, respec-
tively, for all the datasets. We apply class-wise max normal-
ization to our BN score to consider the different ranges of
the scores across the classes for stability of training.

During the training, we aim to select an auxiliary sample
that has no bias attribute but has the same class label with
x as xBN from DBN. If no sample in DBN has the same
label as x, we select the sample that has the same label with
x from DBN

cand. In a case where there’s no sample with the
same label as x in both DBN and DBN

cand, we sample xBN that
has the same label with x from D.

As described in Sec. 3.1 in the main paper, we utilize
the pretrained biased models to construct DA, following the
previous work [8]. We utilize ResNet18 [3] for the pre-
trained biased models, and all the pretrained biased models
are randomly initialized before training. The models are
trained for 1K iterations with the generalized cross entropy
(GCE) loss [17]. Within each model, the samples with a
high ground-truth probability (i.e., ≥ 0.99) are considered
as BA samples. Based on majority voting, we collect the
samples that are considered as the BA sample by the ma-
jority of the models and construct the bias-amplified dataset
DA. We use five pretrained biased models following the



study of Lee et al. [8]. Lee et al. demonstrate that adopting
the additional biased models requires a negligible amount
of additional computational costs and memory space. Note
that the same biased models are utilized when constructing
DBN

cand.

I. Limitations and future work
Although our BN score effectively encourages BC samples
to be mainly adopted as auxiliary inputs, the auxiliary in-
puts still can include a few BA samples, as shown in Table 2
of Sec. 4.3 in the main paper. Accordingly, such BA sam-
ples may interfere with the model to capture the intrinsic
features. Identifying intrinsic attributes without relying on
auxiliary inputs can be one promising future work.

In addition, since our IE weight is designed to enhance
intrinsic features by imposing spatially different values on
the features, our method might be more effective especially
when bias attributes are located in different regions from the
intrinsic attributes. In this regard, applying channel-wise
re-weighting [4] to our approach will further improve the
general applicability of our method.

Despite the limitations above, we believe that our work
poses the importance of enhancing intrinsic attributes for
debiasing.
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