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Method BAcc. (1) Eopp.({) DP(])
ViT [1] 68.7 55.9 41.6
VPT [4] 75.0 36.4 32.1
VPT [4]+AT [8] 63.2 23.4 24.1
VPT [4]+FSCL+ [7] 66.5 11.8 20.6
Fair-VPT (Ours) 76.3 12.1 12.0

Table 1. Experimental results for Attractive on CelebA. Eopp.
and DP denote equal opportunity [3] and demographic parity [2] .
We set Gender the the sensitive attribute.

Method BAcc. (1) EOpp.(J) DP()
ViT [1] 61.3 42.3 30.6
VPT [4] 62.8 40.4 28.5
VPT [4]+AT [8] 57.3 343 23.7
VPT [4]+FSCL+ [7] 63.6 41.0 252
Fair-VPT (Ours) 65.3 18.3 15.9

Method BAcc. (1) EOpp.(J) DP({)

ViT [1] 74.8 53.2 49.0

VPT [4] 76.0 42.0 46.3
VPT [4]+AT [8] 77.5 45.6 43.2
Fair-VPT (Ours) 80.7 37.6 37.2

Table 5. Experimental results on Waterbirds. The target label is
highly biased to the background.

CelebA UTK Face
Method Acc. BAcc. EO  BAcc. EO
VIiT [1] 784 687 41.6 884 134
VPT [4] 81.7 75.0 32.1 89.0 12.6
VPT [4]+AT [8] 67.6 632 240 88.9 11.6
VPT [4]+FSCL+[7] 69.3 66.5 20.6 89.0 9.9
Fair-VPT 786 763 12.0 90.9 4.9
VPT (deep) [4] 823 756 31.7 904 11.1
Fair-VPT (deep) 79.1 76.5 142 90.5 6.7

Table 2. Experimental results for Big Nose on CelebA. We set
Gender the sensitive attribute.

Method BAcc. (1) Eopp. () DP({)
VIT [1] 88.4 9.3 13.5
VPT [4] 89.0 11.3 12.1
VPT [4]+AT [8] 88.9 8.1 11.6
VPT [4]+FSCL+ [7] 89.0 9.6 9.9
Fair-VPT (Ours) 90.9 4.1 4.9

Table 3. Experimental results on UTKFace. The target label and
sensitive attribute are respectively set to Race and Gender.

Method BAcc. (1) EOpp. () DP(])

ViT [1] 74.8 532 49.0

VPT [4] 76.0 42.0 46.3
VPT [4]+AT [8] 71.5 45.6 43.2
Fair-VPT (Ours) __ 80.7 37.6 372

Table 4. Experimental results on bFFHQ. The target label and
sensitive attribute are set to Age and Gender respectively.

1. Comparison Results with Other Metrics

We provide the comparison results measured by demo-
graphic parity [2] and equal opportunity [3] in Table 1, 2
3,4, and 5.

2. Incorporation into VPT-deep Variant

As mentioned in the main paper, the proposed method is
fundamentally designed based on VPT-shallow. However,

Table 6. Incoporation into VPT-deep. We set Attractive and Race
to the target labels on CelebA and UTKFace, respectively. We set
Gender to the sensitive attribute on both datasets.

it can be simply applied to the VPT-deep by prepending
the prompts into the input space of each transformer layer.
In Table 6, the proposed methods significantly enhance
fairness in both the variants (i.e., Fair-VPT and Fair-VPT
(deep)). They each demonstrate superior performance in
terms of accuracy and equalized odds (EO) respectively.

3. Discussion on Training Time

In this section, we compare the training time of the pro-
posed method with the baseline (i.e., VPT [4]). Compared to
the baseline, our method further requires the classification
and projection heads, which are single fully connected lay-
ers, and the calculation of the masked self-attention. How-
ever, the overhead of these additional components is not sig-
nificant, and the backbone network (i.e., ViT [1]) remains
frozen. Therefore, the training time of our method is com-
parable to the baseline. Empirically, ours shows a training
time of approximately 1.29 times that of the baseline on
CelebA.

4. Discussion on Hyper-parameters

The hyper-parameters M and « influence the trade-off be-
tween accuracy and fairness. When « is relatively larger
compared to M, accuracy tends to be improved. Meanwhile,
when M is relatively larger than «, fairness tends to be en-



hanced. In addition, the absolute size of M affects the over-
all performance. Therefore, we fix it in all models as 50 for
fair comparison.

5. More Details for Implementation

For GRL [8] and FSCL+ [7], we set the ratio for gradient
reversal and the temperature to 1 and 0.1 for all the experi-
ments. For ours, we determine A to be 0.1 on UTKFace [10],
bFFHQ [5], and Waterbirds [9], and 1.0 on CelebA [6]. The
initial learning rates are set to 0.1 on CelebA, UTKFace,
bFFHQ, and 0.01 on Waterbird.
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