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A. Proofs

A.1. Proof of Theorem 3.1.

Following [12], we address this theorem with a finite num-
ber of samples Sdata = {x1,�,xN}. As mentioned in Ap-
pendix B.3 of [12], pdata of ‘entire’ data and ps of ‘seen’
data can be represented by mixtures of Dirac delta distribu-
tions:

pdata(x) = 1

N

N�
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n
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�(x −xi),
where x ∈ X which is discrete sample space, since any pixel
of an image can be represented by int between 0 to 255. p✓
can be defined in X , which contains Sdata. We defined the
measure based on the KL divergence without q(x) = 0 for
the discrete probability, similar to [19], as follows:
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p(x) log p(x)
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D̃KL becomes the KL divergence when the support of p is
included in the support of q [9]. Then, by the definition:
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Note that as N → �X �, i.e., Sdata → X , the support of pdata
contains the support of p✓ so that D̃KL becomes the same
as the (reverse) KL divergence. Since x log(x) is convex,
we can use Jensen’s inequality. For convenience, let p̄u✓ ∶=
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For small n ≤ N
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For small n < N

2 , log n
N−n < 0, and the upper bound is a

decreasing function with respect to p̄u✓ . Note that as n→ N ,
ppub → pdata, and the upper bound and the lower bound
achieve equality.



B. Experimental settings

For experiments, we follow the learning framework outlined
in Algorithm 1.

Algorithm 1: Private training with public data
Input: Private dataset Dpr, public dataset Dpub;

Initial classifier w, diffusion model ✓,
(discriminator  ); Synthetic dataset size k.

Output: Final private classifier wT .
(Phase I) Synthesis and warm-up training

Train diffusion with public ✓∗ ← (✓;Dpub).
if Generation diversity then

Train discriminator  ∗ ← ( ;✓∗,Dpub).
Make synthetic public set Dsyn ← (✓∗, ∗, k).
Augmentation diversity
Warm-up classifier w0 ← (w;Dsyn,aug,opt).

(Phase II) Private training

for t = 0,1, . . . , T − 1 do

if Extended optimization then

Run extended methods fg (e.g., Eq. 3)
wt+1 ← (wt;D

pr,Dsyn).
else DP-SGD (Eq. 2) wt+1 ← (wt;D

pr) ;
end

B.1. Classification

Private training For private learning, we adopt all the
techniques of [4] with WRN-16-4. We employ the tech-
niques such as augmentation multiplicity to minimize
the averaged loss of various augmentations Li(w) =
Ek[`(w,augk(xi))], weight standardization [16], and
Exponential Moving Average (EMA). We re-implement
the JAX official code of [4] in https://github.
com/google- deepmind/jax_privacy and ex-
tended methods using Pytorch Opacus [22] libraries.

We present the experimental details for CIFAR-10 in Ta-
ble 12 and CIFAR-100 in Table 13 with their search spaces
and best hyperparameter values. All experiments are con-
ducted with DP-SGD with momentum 0 unless otherwise
specified. As private learning is hugely affected by the hy-
perparameter settings, we use a different search space for
cold and warm settings. We calculated the noise level � for
training with the hyperparameters in Tables 12 and 13 using
Opacus libraries.

Warm-up training We present the experimental details
of the warm-up phase with SGD (not DP-SGD) in Table 14.
We use SGD with momentum 0.9 as a default setting for
warm-up training. For the warm setting, we train epochs
until convergence since the number of training data of 2K is
less than the warmSyn of 50K samples.

Pre-trained model We use pre-trained Vision Transform-
ers such as DeiT, and CrossViT, with the ghost clipping
methods proposed in [3] and their GitHub code from
https://github.com/woodyx218/private_
vision. For the cold setting, we trained the models with 5
epochs with Adam optimizer with a learning rate of 0.002.
We used a batch size of 1K following the default settings
in GitHub. We tested various ranges of model sizes. For the
warm settings, we took a grid search on the learning rate of{0.0005,0.001,0.002} on both the warm-up phase and the
private training phase.

B.2. Diffusion synthesis

EDM settings We implemented EDM [12] from their
official GitHub code from https://github.com/
NVlabs/edm. We trained the EDM model using the base
settings as reported on the official GitHub repository. For
the CIFAR-10 dataset, we utilized a batch size of 512 im-
ages, distributed among four NVIDIA GeForce RTX 3090
GPUs, while maintaining the other setting as the default set-
ting. Specifically, we use a learning rate of 10−3, an EMA
coefficient of 0.5, duration of 200. The detailed settings
are reported in Table 7 of [12]. We sampled images with
�min = 0.002,�max = 80,⇢ = 7, Schurn = 0, Smin =
0, Smax = ∞, Snoise = 1, and a step size of 18, as the de-
fault setting. For the CIFAR-100 dataset, we employed a
batch size of 1024 images, distributed among four NVIDIA
A100 GPUs, while maintaining the same settings as those
used for the CIFAR-10 dataset. The training took about 3
days with four NVIDIA GeForce RTX 3090 GPUs. Sam-
pling with a step size of 18 and a batch size of 500, took
less than 30 seconds per batch when using a single NVIDIA
GeForce RTX 3090 GPU. Therefore, it took about one hour
to sample 50K images.

In summary, we require about 10-15 times for training
diffusion and 0.2-0.4 times for sampling 50K images com-
pared to training our classifiers of [4].

DG settings We implemented DG [13] from their of-
ficial GitHub code from https://github.com/
alsdudrla10/DG. We trained both the classifier and dis-
criminator for DG from scratch with synthetic data from the
2K public data. We avoided using pre-trained models from
the CIFAR or Imagenet datasets to solely investigate the ef-
fects by using in-distribution data.

C. Additional Notes

C.1. DP-SGD

The noise level � of DP-SGD is determined by the total
steps, sampling probability, and privacy budget (", �) as fol-
lows:



Table 12. Hyperparameters for CIFAR-10.

Setup Hyper-parameter Search space Best values

Warm

" {1, 2, 3, 4, 6} 1 2 3 4 6
� {10−5} 10−5 10−5 10−5 10−5 10−5
Multiplicity K {16} 16 16 16 16 16
Batch size {4096} 4096 4096 4096 4096 4096
Clipping norm C {1} 1 1 1 1 1
Epochs {15, 20, 30, 40} 15 30 30 30 20
Learning rate ⌘ {0.1, 0.5, 1, 2, 4} 0.5 0.5 1 1 2

+ Extended Public batch size {32, 64, 128} 64 64 64 64 64

Table 13. Hyperparameters for CIFAR-100.

Setup Hyper-parameter Search space Best values

Warm

" {1, 2, 6, 10} 1 2 6 10
� {10−5} 10−5 10−5 10−5 10−5
Multiplicity K {16} 16 16 16 16
Batch size {4096} 4096 4096 4096 4096
Clipping norm C {1} 1 1 1 1
Epochs {25, 50, 75} 25 50 75 75
Learning rate ⌘ {0.1, 0.5, 1, 2, 4} 0.5 0.5 1 1

+ Extended Public batch size {32, 64, 128} 64 64 64 64

Table 14. Hyperparameters for warm-up phase on CIFAR-10 and CIFAR-100.

Hyper-parameter Search space CIFAR-10 CIFAR-100
Batch size {64, 100, 128, 256} 64 64
Epochs {50, 100, 200} 100 200
Learning rate ⌘ {0.05, 0.1, 0.2, 0.3} 0.1 0.1
Momentum {0.9} 0.9 0.9
Learning rate decay {Cosine} Cosine Cosine
Weight decay {5 × 10−4} 5 × 10−4 5 × 10−4
Radius ⇢ for SAM {0.05, 0.1, 0.2} 0.1 0.1

Proposition C.1 (Abadi et al. [1]). There exist constant c1
and c2 so that given total steps T and sampling probability

q, for any " < c1q2T , DP-SGD guarantees (", �)-DP, for any

� > 0 if we choose

� ≥ c2 q
�
T log(1��)

"
. (4)

C.2. Deep Analysis for Toy Example in Section 3.2

For the spiral dataset, the radius increases proportionally
with the angle and at each location, the points have a proba-
bility distribution that decreases proportionally with the cu-
mulative sum. In other words, points closer to the origin

have higher probabilities. With this dataset, we construct a
simple diffusion model with time step 20 and two diffusion
blocks, containing a linear layer with 64 units. We train the
model 10K epochs with a learning rate of 0.001 using Adam
optimizer. For classifiers, we train 2-layer neural networks
with ReLU, optimized using BCELoss and a learning rate
of 0.1 with SGD until convergence.

With the same examples of the spiral dataset, we plot
the probability density functions along the x-axis in Fig-
ure 6, with 100% (sufficient), and 10% and 4% (insufficient)
cases. Specifically, the diffusion model effectively approxi-
mated the distribution, regardless of the number of training
data in region A. However, in region C, where the true den-
sity is high, the generated distribution shows a higher prob-



Figure 6. Probability density of toy experiment.

ability when the number of training data is limited. This
indicates that when the number of training data is small, the
model tends to memorize the training dataset. Conversely,
in regions B and D, where the true density is low, the prob-
ability distribution of generated samples is lower than the
true distribution, even if the true density is low. This indi-
cates that when the number of samples is small, the model
tends to ignore the tail distribution. As the number of in-
distribution data is small, we should be aware of using syn-
thetic data in terms of data memorization and ignore the tail
part.

GAN mode collapse The diversity problem is more sig-
nificant in other generative models, such as generative ad-
versarial networks (GAN) [7]. As GAN can generative im-
ages with high fidelity, however, GAN suffers from train-
ing instability to control both generator and discrimina-
tory, sometimes generating only a small portion of data
repeatedly called mode collapse. The mode collapse hap-
pens when the convergence speed of the discrimination is
faster than that of the generator, which induces the genera-
tor to generate the same images which can confuse the dis-
criminator without generating similar images to real data.
Figure 7 illustrates that the mode collapse happens with a
smaller number of samples on Ring data. Thus, we mainly
focus on diffusion models in this paper.

C.3. Notes on Discriminator Guidance [13]

We use Discriminator Guidance (DG) [13] as a tool to un-
derstand the important factor of diffusion for performance
gain without privacy concerns. By adjusting the weight of
DG wd, we determined that diversity is the key factor for
sparse data. Previously, to control the trade-off between
fidelity and diversity in diffusion models, Dhariwal and
Nichol [5] suggested using the classifier to diffusion net-
works. The classifier, which is trained on noisy images dur-
ing diffusion steps and their labels, can force the model to
generate certain types of images based on their labels. To

push further, DG [13] adopted another network called dis-
criminator. The discriminator is trained to decide whether
the images during the diffusion process are generated from
real data or not. Thus, similar to the discriminator in GAN,
the model can force the diffusion model to generate more
similar images to the real datasets. Both studies enable the
users to control the level of fidelity and diversity in diffu-
sion sampling, where the optimal FID is obtained with a
moderate level of fidelity and diversity. Instead, we focus
on a high level of weight in the discriminator to generate
images with high diversity, rather than repeating typical im-
ages with high fidelity.

Generation diversity and augmentation diversity We
demonstrate the additional experiments on both using
generation diversity by DG and augmentation diversity.
Figure 8 shows CAS and private classification accuries
("=2) for wd = [0,3,10,20] for DG with or without
traditional augmentation on CIFAR-10. The combination
of DG(wd=10)+Aug performs best (85.93%), surpassing
EDM+Aug (85.48% in Table 6). Yet, we conclude that the
gain is marginal than DG alone (2.53%p). Due to DG’s extra
complexity, we rather use EDM alone for experiments while
using DG for investigating the important factors in gener-
ation. We believe that EDM can cover the data diversity
(more than DDPM) in ID public synthesis. Note that data
diversity remains a critical factor in enhancing performance
when the model is not trained on specific in-distribution
public data, as demonstrated in Table 10.

C.4. Training Dynamics

For a detailed analysis of the learning dynamics of Section
5.3, we show additional results of the private training phase.
We measure the gradient norm and loss of private and syn-
thetic data, as shown in Figure 9. As DP-SGD focuses on
private data, the loss of private data decreases constantly,
while the loss of public data is increasing. On the other
hand, DOPE-SGD minimizes the loss of both synthetic and
private data. However, in a certain range of training, DOPE-
SGD occasionally fails to converge and thus diverge, where
their gradient norms explode and the accuracy plummets to
0. As private training usually uses a larger learning rate than
standard training, explicitly minimizing the public gradient
might be dangerous as the model can be overfitted to train-
ing data and stuck into sharp minima during training.

Interestingly, Figure 9d illustrates the private gradient
norm without clipping. Both DOPE-SGD and DP-SGD
show diverging gradient norms during training. This indi-
cates that private training does not decrease the gradient
norm, but rather decreases the clipped gradient norm.



(a) GAN trained with 160 samples. (b) GAN trained with 400 samples.

(c) GAN trained with 1K samples. (d) GAN trained with 10K samples.

Figure 7. Mode collapse of GAN with a different number of samples on Ring data.

Figure 8. CAS and test accuracies by different synthetic images on
the guidance weight wd.

D. Ablation study

D.1. Synthetic Public Data using Text-to-Image Dif-

fusion Models

To mitigate the drawbacks of the proposed method concern-
ing training diffusion models, we conduct experiments with
the pre-trained Stable Diffusion (SD) [6, 17], without train-
ing diffusion models. The text-to-image diffusion model is
trained on a larger public LAION dataset [18]. Bao et al. [2]
already utilized that using pre-trained diffusion models does

not incur privacy leakage for differentially private classifi-
cation tasks.

In Table 10, we examine various datasets including Eu-
roSAT [10], which focuses on land use and land cover clas-
sification; PathMNIST [21], representing colon pathology
datasets; and [11] for the case of sensitive attributes, which
includes human face images depicting seven distinct race
groups: White, Black, Indian, East Asian, Southeast Asian,
Middle Eastern, and Latino. Without any additional fine-
tuning, we provide the text prompt ‘a color photo of the
face of {group name} race for the FairFace datasets, and ‘a
photo of a {class name}.’ for the other datasets to generate
synthetic datasets. The data samples are resized to the size
of 32×32 for training. As a result, Table 10 illustrates the
strength of diffusion and diversity for warm-up training.

While we highlight the effectiveness of synthesis on a
small fraction of public data, someone might argue that us-
ing ID public data might be dangerous for privacy. Thus,
we conduct experiments with the Stable Diffusion without
utilizing any ID public data. We compare test accuracies af-
ter private training, whether pre-trained on synthetic data or
not. The results presented in Table 15 indicate that warm-
up training using pre-trained diffusion models can notably
enhance classification performance. This gives strong evi-



(a) Loss of synthetic data. (b) Loss of private data.

(c) Gradient norm of synthetic data during training.
(d) Gradient norm of private data during
training without clipping.

Figure 9. Learning dynamics during private training of various optimization methods.

Table 15. Comparison of using synthetic data from pre-trained
text-to-image diffusion models, without using in-distribution pub-
lic data.

Dataset Syn Test Acc (%)
" = 2 " = 6 " = 10

CIFAR-100 7 18.19 33.61 39.09
3 52.57 58.94 60.85

FairFace 7 39.09 44.39 45.34
3 48.21 53.32 54.75

dence that private training, which suffers from the lack of
training data samples, can be improved using diffusion syn-
thesis. Note that the accuracies of synthetic images after the
warm-up (" = 0) are 29.25% for CIFAR-100 and 28.46% for
FairFace. The resulting images are presented in Figure 11 of
Appendix E.

D.2. Effect of Generated Data Size

To analyze the effect of the generated data size, we train
models with 5K, 20K, and 40K synthetic samples in the
warm-up phase until convergence for each model. The re-
sults in Table 16 indicate that data size remains a critical
factor, even when applying the identical EDM model. Note
that the 40K sample size is equal in the experiments of [15].

Table 16. Performance by the different number of synthetic data
on CIFAR-10.

Generated Test Acc (%)
" = 2 " = 4 " = 6

5K 77.50±0.03 77.97±0.02 78.22±0.31
20K 83.21±0.12 84.05±0.04 84.16±0.08
40K 85.11±0.05 85.66±0.07 86.04±0.01

Table 17. Performance by using different amounts of public data
of CIFAR-10.

Public Size Method Test Acc (%)
" = 2 " = 4 " = 6

500 (1%) [15] 68.9 72.1 77.1
Ours 78.32 80.99 82.15

2K (4%) [15] 75.1 77.9 80.0
Ours 85.48 86.49 87.06

D.3. Different Amount of Public Data

To analyze the effects of varying amounts of public data on
synthesis, we reproduce the CIFAR-10 results using only
500 public samples (1% of the training data), with each
class comprising only 50 data points. We keep all other
hyperparameters the same, including diffusion synthesis,



Table 18. Performance comparison of trained on the public and augmented data on CIFAR-10.

" = 0 " = 2 " = 4 " = 6
Warm (w/ Aug and Opt) 69.63 75.44 77.22 77.99

Ours 80.72 85.48 86.49 87.06

Table 19. Test accuracy (%) of private classification using pre-trained models.

Datasets Privacy budget " = 1 " = 4
Architecture Pre-trained Cold Warm Ours Cold Warm Ours

CIFAR
-100

CrossViT small 240 (26.3M) 3 66.88 74.70 78.91 72.91 78.80 81.75

CrossViT 18 240 (42.6M) 3 71.27 78.60 81.39 76.22 81.73 83.75

DeiT base patch16 224 (85.8M) 3 63.84 81.55 81.62 72.84 84.60 84.43
CrossViT base 240 (103.9M) 3 71.08 77.30 79.65 76.63 80.43 82.63

Table 20. Test accuracy of adversarial training on CIFAR-10.

Datasets Architecture Public Synthesis Methods " = 2
CIFAR

-10 WRN-16-4 (2.74M) 3 3 Adversarial training (8�255) in warm-up 77.25
3 3 Adversarial training (2�255) in warm-up 81.55

warm-up training, and private learning. The results pre-
sented in Table 17 demonstrate that our method consistently
surpasses the previous method even when assuming a small
data size.

D.4. Results of Augmentation and Generalization

without Diffusion Synthesis

The results on the augmented public data and SAM, with-
out using EDM synthesis, are presented in Table 18. The
table illustrates the importance of diffusion synthesis alone
without relying on augmentation and generalization.

D.5. Different Privacy Budget " on Pre-trained

CIFAR-100

We additionally append the experimental results of CIFAR-
100 with pre-trained models on ImageNet, in Table 19 with
privacy budget of " ∈ {1,4}.
D.6. Additional Optimization during Warm-up

We try to use other techniques for private learning to im-
prove classification performance. The classification results
with (2,10−5)-DP are presented in Table 20 using adver-
sarial training [14]. Adversarial training aims to make deci-
sion boundaries smooth in terms of input space. Thus, we
hypothesize that using adversarial training in the warm-up
training can make the private training easier. Furthermore,
the importance of generative models is well under-studied
in adversarial training [8, 20]. Similar to DP training, as
the task of adversarial training is harder than standard train-
ing, Wang et al. [20] observed that utilizing the synthetic

data with EDM can improve the generalization performance
and prevent robust overfitting without extra data samples.
Therefore, we adopt to use of adversarial training on the top
of synthetic data in the warm-up phase. However, adver-
sarial training methods are designed to reduce the accuracy
of PGD-10 [14], and the standard accuracy is significantly
dropped. Therefore, the private classification results are also
decreased.

E. Generated images

We illustrate the samples of generated images using ID pub-
lic data. Figure 10a demonstrates the memorization within
CIFAR-10, by random sampling synthetic images in the
first row and choosing the nearest samples in the synthetic
dataset. Figure 10b and Figure 10c are obtained from gener-
ated images of CIFAR-10, and Figure 10d is obtained from
generated images of CIFAR-100.

Furthermore, we present samples of generated images
utilizing pre-trained text-to-image diffusion models in Fig-
ure 11, which is discussed in Appendix D.



(a) Illustration of memorization within generated CIFAR-10 images.

(b) Samples of generated CIFAR-10 images with EDM using 2K samples.

(c) Samples of generated CIFAR-10 images with EDM + DG (wd=30) using 2K samples.

(d) Samples of generated CIFAR-100 images with EDM using 2K samples.

Figure 10. Samples of generated images using in-distribution public data.



(a) Illustration of generated CIFAR-100 images. Each image represents one distinct class.

(b) Illustration of generated FairFace images. Each row illustrates the sampled images for each race.

Figure 11. Samples of generated images using pre-trained text-to-image diffusion models.
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