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Supplementary Material

In this supplementary material, we provide a detailed ex-
planation of RIST and additional experiment results.

A. Inference Algorithm of RIST
In this section, we provide a detailed algorithm for the in-
ference process of RIST for a better understanding of RIST.
As shown in Algorithm 1, given a pair of shapes, we cross-
reconstruct one shape and find the nearest neighbor for each
point of the cross-reconstructed shape from the other shape,
following the inference algorithm of the previous work [3].

Algorithm 1 : Inference
Input: A pair of shapes (P,Q), Encoder(·), Decoder(·)
Output: Correspondence C for all p 2 P

1: Zp, {fp
✓i
} Encoder(P)

2: Zq , {fq
✓i
} Encoder(Q)

3: Q0 Decoder({fp
✓i
(Zq)}) . Cross-recon. from P to Q

4: C  {} . Initialization
5: for {i 1 to |P|} do
6: p Pi

7: q NearestNeighborSearch(Q0
i,Q)

8: C  C [ (p,q)
9: end for

B. Ablation Study on Losses
In this section, we conduct an ablation study of the compo-
nents of our self-reconstruction loss (Eq. 1) on the motorcy-
cle category of the ShapeNetPart dataset [39]. As shown in
Table A1, our choice (b) shows the best performance among
models trained with the seven loss variants from (a) to (g).

MSE EMD CD IoU (%)

(a) 3 3 3 46.0
(b) 3 3 48.5
(c) 3 3 47.0
(d) 3 3 46.4
(e) 3 45.8
(f) 3 46.4
(g) 3 44.9

Table A1. Ablation study on the self-reconstruction loss. The
model trained with ((b): MSE and EMD) shows the best perfor-
mance, justifying our choice for the self-reconstruction loss.

C. Multi-class Training
In this section, we provide the experiment results of pre-
vious approaches [3, 8, 17, 38] and ours trained with

multiple classes (airplane and chair) in the ShapeNetPart
dataset [39]. As shown in Table A2, RIST outperforms pre-
vious approaches [3, 8, 17, 38] by a large margin.

Method Airplane Chair Average

FoldingNet [38] 20.9 23.9 22.4
AtlasNetV2 [8] 21.1 24.6 22.9
DPC [17] 22.7 25.6 24.2
CPAE [3] 16.6 14.8 15.7
RIST (ours) 34.4 34.7 34.6

Table A2. Part label transfer with multi-classes training.

D. Generalization to Unseen Classes
In this section, we evaluate the generalization ability of pre-
vious approaches [3, 8, 17, 38] and ours to unseen classes.
Specifically, we train each method on the airplane category
in the ShapeNetPart dataset [39] and test it on the chair cat-
egory. As shown in Table A3, RIST shows a competitive
result with an unseen category, outperforming previous ap-
proaches [3, 8, 38] except DPC [17].

FoldingNet [38] AtlasNetV2 [8] DPC [17] CPAE [3] RIST

24.8 23.0 28.2 15.6 27.3

Table A3. Generalization results for the part label transfer.

E. Inference on Aligned Shapes
In this section, we provide the results of previous ap-
proaches [3, 8, 17, 38] and ours evaluated on the ShapeNet-
Part [39], ScanObjectNN [35], and KeypointNet [40]
datasets, but with aligned test shapes, as shown in Table A4,
Table A5, and Figure A1, respectively. Note that under the
aligned setting, the input shape pairs are perfectly aligned
both at train and test time - which is an unrealistic setting in
practice. For each method, we also include the results with
rotated shapes to show the performance difference between
aligned and rotated settings. It can be seen that while the
drop in performance for previous approaches [3, 8, 17, 38]
from the aligned to the rotated setting is drastic, the dif-
ference is negligible in RIST, demonstrating the robustness
of our SO(3) correspondence establishment scheme against
arbitrary rotations. While RIST is not always competitive
on all settings, it is impractical to expect perfectly aligned
shapes in real-world situations; on the realistic setting of
SO(3) evaluation, RIST consistently shows the best results.



Inference Method Airplane Cap Chair Guitar Laptop Motorcycle Mug Table Average

Aligned

FoldingNet [38] 56.5 54.9 63.1 73.1 81.9 21.5 75.5 54.0 60.1
AtlasNetV2 [8] 51.7 44.7 63.3 65.0 84.0 41.5 84.2 59.3 61.7
DPC [17] 60.5 65.8 65.3 74.4 88.0 53.3 85.4 66.4 69.9
CPAE [3] 61.3 61.6 72.6 78.9 89.9 55.4 86.5 72.5 72.3
RIST (ours) 52.1 54.4 58.3 74.1 56.7 48.7 75.6 41.3 57.7

Rotated

FoldingNet [38] 17.8 34.7 22.5 22.1 36.2 12.6 50.0 34.6 28.8 (# 31.3)
AtlasNetV2 [8] 19.7 31.4 23.6 22.7 36.0 13.1 49.7 35.2 28.9 (# 32.8)
DPC [17] 22.7 37.1 25.6 31.9 35.0 17.5 51.3 36.8 32.2 (# 37.7)
CPAE [3] 21.0 38.0 26.0 22.7 34.9 14.7 51.4 35.5 30.5 (# 41.8)
RIST (ours) 52.1 54.5 58.3 74.1 56.5 48.6 75.0 41.3 57.6 (# 0.1)

Table A4. Average IoU (%) of part label transfer for eight categories in the ShapeNetPart dataset [39] on aligned and rotated
shapes. Note that each method is trained without rotation augmentation. RIST shows the most negligible performance drop (0.1% in IoU)
with rotated shapes, while previous approaches [3, 8, 17, 38] show large performance drops (at least 30% in IoU).

Inference FoldingNet [38] AtlasNetV2 [8] DPC [17] CPAE [3] RIST (ours)

Aligned 33.6 34.8 36.3 33.8 39.6
Rotated 23.2 (# 10.4) 23.6 (# 11.2) 23.9 (# 12.4) 24.4 (# 9.4) 39.6 (�)

Table A5. Average IoU (%) of part label transfer for the chair category in the ScanObjectNN dataset [35] on aligned and rotated
shapes. Note that each method is trained without rotation augmentation. RIST does not show any performance drop with rotated shapes,
while previous approaches [3, 8, 17, 38] show large performance drops (at least 9% in IoU).

Figure A1. Percentage of Correct Keypoints (PCK) for the 12 categories of the KeypointNet dataset [40] on aligned and rotated
shapes. Note that each method is trained without rotation augmentation. While previous approaches [3, 8, 17, 38] are vulnerable to
rotations, RIST shows a negligible performance drop with rotated shapes.



Figure A2. Comparision of RIST with the combination of
CPAE [3] and aligning methods; PCA and VN-SPD [12]. Note
that RIST shows competitive results to the combined method of
CPAE [3] and VN-SPD [12], which is a SE(3)-equivariant orien-
tation predictor and requires additional parameters (17.4M).

We further evaluate CPAE [3] when integrated together
with two 3D shape alignment methods. We present results
when using PCA or VN-SPD [12] as the alignment method
in Figure A2. PCA yields only marginal performance im-
provements, likely due to sign and order ambiguities. In
contrast, using the SOTA learning-based alignment method,
VN-SPD, produces competitive results with RIST, but its
inconsistency in aligning shapes to a canonical orientation
limits performance as also reported in Katzir et al. [12], sac-
rificing the efficiency.

F. Comparision with 3D Keypoint Estimators
We compare RIST with SC3K [45], a recent self-supervised
method for coherent 3D keypoint estimation. However,
since this 3D keypoint estimation method cannot be eval-
uated on 3D keypoint matching, we instead used the Dual
Alignment Score (DAS)4 of RIST for an empirical com-
parison with SC3K. Additionally, to facilitate comparison
on the part label transfer task, we extended the number of
keypoints estimated by SC3K to match the total number of
points in a point cloud e.g., 2048.

Method Airplane Car Chair

SC3K [45] 81.3 73.8 86.2
RIST (ours) 82.4 76.9 81.8

Table A6. Dual Alignment Score of SC3K [45] and RIST. Dur-
ing the evaluation, we use 10 keypoints for both SC3K and RIST.

Method Airplane Car Chair

SC3K [45] 22.3 23.0 24.7
RIST (ours) 51.2 48.0 55.0

Table A7. Part label transfer results of SC3K [45] and RIST.
Note that we train SC3K [45] with 2048 keypoints.

4A metric for 3D keypoint estimation task SC3K [45] used.

As shown in Tables A6 and A7, RIST exhibits com-
petitive DAS results compared to SC3K, although it is not
trained for 3D keypoint estimation, and significantly out-
performs SC3K on the part label transfer task.

G. Evaluation with Pseudo-Ground Truth
We utilize DIT [44] to establish pseudo-ground truth on
ShapeNet [1] for a direct evaluation of RIST’s dense seman-
tic correspondence capabilities for airplane, car, and chair
classes, using official checkpoints. As shown in Figure A3,
the results show a similar trend of part label transfer results,
showing that RIST outperforms previous approaches.

H. Implementation Details of SO(3)
In this section, we explain the implementation details of
uniformly sampling random rotations and highlight the dif-
ferences from the previous approach [3]. Cheng et al. [3]
samples rotation angles from N (0, 0.22) and then clamps
them to [� 1

2⇡,
1
2⇡], which limits the range of rotation. In

our work, we follow Shoemake et al. [30] to uniformly sam-
ple to cover full SO(3), which is more challenging.

I. Part Label Transfer Results on More Classes
We initially presented evaluations only for the classes of
ShapeNetPart [39] that are shared with those of Keypoint-
Net [40]. In Table A8, we further present part label transfer
results on the remaining classes of ShapeNetPart [39].

Method Bag Car Ear. Knife Lamp Pistol Rocket Skate.

CPAE [21] 43.2 20.3 33.4 36.3 31.1 26.8 27.7 52.0
RIST (ours) 50.8 48.0 36.3 57.9 35.9 54.7 34.4 54.4

Table A8. Part label transfer results on ShapeNetPart [39].
RIST consistently outperforms the previous state-of-the-art
method on the remaining classes of ShapeNetPart [39].

J. Matching with Local Shape Transform
In this section, We experiment with a variant of RIST
(RISTLST), which matches 3D shapes using similarity be-
tween SO(3)-invariant Local Shape Transform (LST). As
shown in Table A9, our current scheme of comparing
point positions yields noticeably better results on ShapeNet-
Part [39], meaning that our trained decoder is better adept
at handling topology-varying structures

K. Alignment of Qualitative Results
In this section, we provide both unaligned and aligned qual-
itative results for a better understanding of how our quali-
tative results were drawn. As shown in Figure A4, both



Figure A3. 3D semantic correspondence results of RIST using DIT [44] as pseudo-ground truth on ShapeNet [1]. We use the official
checkpoints of DIT to generate pseudo-ground truth of 3D semantic correspondence for rotated 3D shapes.

Method Airplane Chair

CPAE 17.0 24.5
RISTLST 48.6 50.3
RIST 51.2 55.0

Table A9. Part label transfer results of RISTLST. Note that we
use randomly rotated 3D shapes for the evaluation.
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Figure A4. Visualization for aligning qualitative results of part
label transfer on the ShapeNetPart dataset [39].

source and target shapes are randomly rotated at the infer-
ence time. Note that we use the part segmentation labels
transferred by RIST for the target shape in Figure A4.

L. Qualitative Results of Part Label Transfer
We provide additional qualitative results on the ShapeNet-
Part dataset [39] that were not included in our manuscript
due to space constraints, as shown in Figures A5 and A6.



Source CPAE Ours GT

Figure A5. Qualitative results of part label transfer on the motorcycle class in the ShapeNet part dataset [39]. Note that the input
shapes were arbitrarily rotated, differently for each target column, but have been aligned for better visibility of part label transfer results.
RIST shows to outperform CPAE [3] consistently, showing a high resemblance to ground truth results.



Source CPAE Ours GT

Figure A6. Qualitative results of part label transfer on the airplane class in the ShapeNet part dataset [39]. Note that the input shapes
were arbitrarily rotated, differently for each target column, but have been aligned for better visibility of part label transfer results. RIST
shows to outperform CPAE [3] consistently, showing a high resemblance to ground truth results.
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