
A. Implementation Details of Distribution Invading Attack
In our study, we use the Distribution Invading Attack (DIA) in [54], with a detailed description found in Algorithm 1.

Specifically, the test batch Bt undergoes an update process as outlined in Line 5. Notice that, unlike the general method of
using mean, our approach utilizes median calculations as per (7) for these BN statistics. For models with BN layers, executing
Line 6 is optional. TTA methods typically perform a single-step update using TTA loss LTTA on ✓ for each Bt, allowing us
to estimate ✓̂ to be approximately equal to ✓. In Line 7, the perturbation �i�1 is updated through projected gradient descent
(PGD) [36], where the projection ⇧" is used to clip �i within the constraint ". This process ensures that the images remain
valid within the [0, 1] range. Lattack is replaced by adversary’s objectives: targeted attack or indiscriminate attack in Section 4.
After N -steps PGD, we get the optimal malicious samples B̂t

mal = Bt

mal + �N .

Algorithm 1: Distribution Invading Attack [54]
1: Input: Model f(·; ✓) of parameters ✓ which include BN statistics (µ̂c, �̂
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mal [ Bt

ben at time t, a
targeted label yttarget on a targeted sample x

t
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ben, learning rate ⌘ of TTA update, learning rate ↵ of attack, the
number of attack steps N , constraint ", and perturbation �0.

2: Output: Perturbed malicious samples B̂t

mal = Bt

mal + �N

3: for i = 1, 2, . . . , N do:
4: Bt  (Bt

mal + �i�1) [ Bt
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5: (µ̂c, �̂
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6: (Optional) ✓̂  ✓ � ⌘ · @LTTA(Bt)/@✓
7: �i  ⇧"(�i�1 � ↵ · sign(r�i�1Lattack(f(· ; ✓̂(Bt))))
8: end for
9: return B̂t

mal = Bt

mal + �N

As we mentioned in Section 4, we discuss the attack objectives Lattack for two types of attacks: targeted attack and
indiscriminate. The targeted attack involves an adversarial input B̂t

mal to make the model misclassify a specific sample xt

target to
incorrect label ytarget, formulated as: B̂t

mal = argmaxBt
mal
�LCE(f(xt

target; ✓̂(Bt)), yttarget). On the other hand, the objective of
indiscriminate attack is to reduce the model’s accuracy on all benign data by manipulating the adversarial input B̂t

mal, given by:
B̂t

mal = argmaxBt
mal

P
(x,y)2Zt

ben
LCE(f(x; ✓̂(Bt)), y).

B. Extended Attack Scenarios
The required knowledge of the white-box attack is excessive but not unattainable. Nevertheless, it is crucial to explore

more feasible attacks with constrained knowledge of the adversary. Therefore, we consider two additional attack scenarios:
the semi-white box attack scenario, in which the adversary has constrained knowledge, and the adaptive attack, in which the
adversary adapts its adversarial objective to obfuscate defense mechanisms.

Semi-white-box attack. We construct a semi-white-box attack that generates malicious samples using only the initial model
parameters, while the system continues to adapt its parameters. This approach is more feasible but weaker than the white-box
attack. As indicated in Table 7, the malicious samples generated by the semi-white-box attacker are comparably toxic to those
from the white-box attacker in an instant attack scenario, and our method demonstrates robustness against such attacks.

Adaptive attack. Since the adversary is aware of defense mechanisms, it can adapt its adversarial objective to obfuscate them.
To verify the robustness of our method against such an adaptive attack, we implement it with an additional regularization term,
|med(Bmal) � med(Bben)|, which ensures alignment between the median of malicious samples and that of benign samples.
However, as shown in Table 7, the adaptive attack is weaker than the white-box attack, and our method (MedBN) is still robust
against such adaptive attacks.

Table 7. Attack Success Rate (%) of targeted attack with TENT.

Attack Method White-box Semi-white-box Adaptive white-box

BatchNorm 72.36 53.73 31.87
MedBN (Ours) 18.36 11.20 7.47



C. Experiment Details

Datasets. Three major benchmarks for TTA [25] CIFAR10-C, CIFAR100-C, and ImageNet-C. These benchmarks are designed
to measure the robustness of networks in classification tasks. Each dataset includes 15 types of corruption and 5 levels of
severity. Our evaluation concentrates on the most severe level 5 of corruption. The CIFAR10-C and CIFAR100-C datasets
contain 10,000 test images with 10 and 100 classes, respectively, and the ImageNet-C dataset contains 5,000 test images with
1,000 classes for each type of corruption.
Implementation details. In all experiments, we adapt the Adam optimizer with a learning rate of 0.001 and no weight decay.
For SAR and SoTTA, we use the SAM optimizer with the Adam optimizer. We follow the baseline papers or official codes to
set the hyper-parameters for each TTA method. For data poisoning attacks, we follow the experimental setting of unconstrained
attack in [54], which is the most threatening attack. Specifically, we use attack steps of 100 with an attacking optimization rate
↵ of 1/255, the initial perturbation �0 of 0.5, and the perturbation constraint " of 1.0.
Details on semantic segmentation task. Our experimental setup aligns with prior works [9,34] on semantic segmentation. We
utilize DeepLabv3+ [7] with ResNet-101 backbone pre-trained on the Cityscapes training set [12] and evaluate its performance
on the validation set of SYNTHIA [42]. In evaluating targeted attack within the segmentation task, we adopt the metric of
Attack Success Rate (ASR), akin to image classification. The performance of indiscriminate attacks is evaluated through the
mean Intersection over Union (mIoU) on benign samples after the attack.

D. Extended Related Works
Test Time Adaptation (TTA). TTA has been studied to address the issue of distribution shift between source and target
domains during the online testing phase, without altering training phase. TTA methods can be broadly categorized into three
groups on the specific parameters they update within a model: (i) fully-updated TTA; update all parameters of the model, (ii)
BN-updated TTA; update only BN parameters of the model, and (iii) meta-updated TTA; update meta networks attached with
frozen pre-trained model. Several studies [6, 10, 14, 35, 53] have improved performance by updating entire model parameters,
which may be impractical when the available memory sizes are limited. The majority of fully-updated TTA methods adopt
the mean-teacher framework, which largely relies on pseudo-labeling of a more reliable teacher model. The stability of
mean-teacher frameworks in changing environments is attributed to their use of an exponential moving average with various
loss functions, such as symmetric cross-entropy.

Since fully-updated TTA methods encompass BN-updated TTA approaches, TTA typically involves adapting pre-trained
models that include BN layers [28], which often struggle with domain shifts at test time due to their reliance on training
statistics optimized for the training distribution. Prior methods in TTA [37, 44] have indicated that adapting BN statistics can
effectively mitigate distributional shifts. Moreover, recent TTA approaches [20, 34, 40] have primarily focused on utilizing
normalization statistics directly from the current test input, often in conjunction with self-training techniques, such as entropy
minimization [39, 52, 61]. Meanwhile, in addition to works [4, 27, 57] focusing on memory efficiency, [47] proposes an
architecture that is efficient in terms of memory. This design combines frozen original networks with newly proposed meta
networks, requiring an initial warm-up using source data. To address the adversarial risks in TTA methods if BN layers are
being adapted, we propose MedBN method that can be integrated into any existing TTA methods if BN layers are being
adapted and demonstrate a theoretical analysis of our method. When MedBN is integrated into these methods, they consistently
demonstrate robustness against malicious samples.
Data poisoning attacks and defenses. Data poisoning attacks involve injecting poisoned samples into a dataset, causing
the model trained with the poisoned dataset to produce inaccurate results at test time. These attacks pose threats to various
machine learning algorithms [2, 5, 38, 45]. Furthermore, recently, [11, 54] suggest the risks of data poisoning attacks in the
test-time adaptation process, wherein TTA methods adapt the model at test time.

For defense against data poisoning attacks, [48] removes outliers by approximating the upper bounds of loss. This method
requires the assumption that the dataset is large enough to approximate the loss. However, for test-time adaptation, the number
of test data is insufficient to concentrate statistics of loss, and there are no labels for the test data, which means that this
approach is not suitable for adaptation during the test phase. [18] demonstrates that adversarial training is an effective defense
method for data poisoning attacks, enhancing the robustness of models in the training phase. However, in test-time adaptation,
access to the training process is restricted, primarily due to privacy concerns related to the training data and the substantial
computational resources required for training. Additionally, adversarial training leads to performance degradation in test data.
Due to the aforementioned limitations, adversarial training is infeasible in this context. To address the above limitations of
existing defenses, we propose a robust batch normalization method that is not only simple and effective but also universally



applicable across any existing TTA methods if BN layers are being adapted.
Median aggregation for robust distributed learning. The abundance of collected data has led to the emergence of distributed
learning frameworks. In such systems, several data owners or workers collaborate to construct a global model, typically
employing the widely used distributed stochastic gradient descent (SGD) algorithm with a central server. This server iteratively
updates the model parameter estimated by aggregating the stochastic gradients calculated by the workers. However, this
algorithm is susceptible to misbehaving workers, referred to as Byzantine in [32], that may send arbitrarily deceptive gradients to
the server, potentially disrupting the learning process [1,49,56]. To address these issues, extensive researches [8,15,22,23,55,58]
have been dedicated to robustly aggregating gradients regardless of Byzantine behavior. Among a wide range of aggregation
methods, the median is widely used for robust aggregation and its effectiveness has been verified: [8] employs the geometric
median for robust aggregation, [55] uses the mean around the median, and [58] utilizes coordinate-wise median. In terms of
robust aggregation, the median can also be applied to robustly aggregate batch statistics against malicious samples. To the
best of our knowledge, we are the first to use the median for robustly aggregating batch statistics to defend against malicious
samples.

E. Effectiveness of MedBN across Different Model Architectures
In the main text, we have focused on ResNet-26. Beyond ResNet-26, our study includes two additional architectures, which

are commonly used in TTA: WideResNet-28 (WRN-28) for CIFAR10-C, as referenced in the RobustBench benchmark [13],
and ResNext-29 for CIFAR100-C from [26]. Table 8 demonstrates the efficacy of MedBN across various architectures over
both attack instant scenarios, indicating that MedBN is independent of specific architectural designs, i.e., architecture-agnostic.

Table 8. Effectiveness of MedBN across various model architectures. We use the batch size of 200 with 40 malicious samples.

Method m = 0
Objective Dataset Architectures Normalization TeBN TENT ETA SAR SoTTA sEMA mDIA TeBN (ER %)

BatchNorm 86.67 80.53 82.00 82.00 27.47 20.53 25.87 20.43CIFAR10-C WRN-28 Ours (MedBN) 24.53 23.33 23.07 22.27 9.07 8.53 11.87 21.49
BatchNorm 96.67 80.00 79.73 84.00 12.93 9.20 7.87 35.56

Targeted

Attack CIFAR100-C ResNext-29 Ours (MedBN) 3.07 2.13 2.27 2.13 1.60 2.00 1.07 37.62
BatchNorm 37.30 34.35 33.70 34.20 27.69 28.45 42.95 20.43CIFAR10-C WRN-28 Ours (MedBN) 29.63 27.24 26.69 26.96 23.98 25.42 35.21 21.49
BatchNorm 62.35 52.02 51.14 52.75 44.44 45.93 46.90 35.56

Indiscriminate

Attack CIFAR100-C ResNext-29 Ours (MedBN) 43.81 39.15 39.32 40.20 37.47 40.51 40.06 37.62

F. Extended Ablation Study Cases
In this section, we present detailed results of the three additional cases in our ablation studies, which were not included in

Section 7.5. Each case explores different combinations of datasets and attack scenarios, providing further insights into the
robustness of our method.
The number of malicious samples. We investigate MedBN’s robustness against different ratios of malicious samples using a
batch size of 200. In the instant attack scenario, MedBN demonstrates robustness across all malicious ratios, performing well
under both targeted attacks (Table 9) and indiscriminate attacks (Table 10).

Table 9. Attack Success Rate (%) of targeted and instant attack for different numbers of malicious samples m with batch size of 200.

# of Malicious Samples (m)
Dataset Normalization 10 20 40 60 80

CIFAR10-C BatchNorm 21.60 42.00 84.00 96.67 99.47
Ours (MedBN) 7.07 10.27 19.20 26.80 38.27

CIFAR100-C BatchNorm 16.80 42.13 92.00 99.73 99.87
Ours (MedBN) 1.73 2.00 2.93 3.60 4.27



Table 10. Error Rate (%) of indiscriminate and instant attack for different number of malicious samples m with batch size of 200.

# of Malicious Samples (m)
Dataset Normalization 10 20 40 60 80

CIFAR10-C BatchNorm 19.07 22.98 31.02 40.14 50.52
Ours (MedBN) 16.42 18.00 22.34 28.00 34.24

CIFAR100-C BatchNorm 45.35 50.03 59.84 69.21 78.99
Ours (MedBN) 43.31 44.38 48.58 53.86 61.44

Test batch size. We assess the effect of varying batch sizes with a fixed ratio of malicious smaples around 20%. In the case
of targeted attacks, MedBN consistently achieves significantly lower ASR compared to BN across all batch sizes (refer to
Table 11. Similarty, in the case of indiscriminate attacks, MedBN consistently outperforms BN with lower error rates across all
tested batch sizes (refer to Table 12).

Table 11. Attack Success Rate (%) of targeted and instant attack for different batch size B with a consistent 20% of malicious samples.

Batch-size (B)
Dataset Normalization 200 128 64 32 16

CIFAR10-C BatchNorm 83.91 87.76 84.84 83.87 84.60
MedBN (Ours) 19.16 20.51 17.83 20.19 29.14

CIFAR100-C BatchNorm 91.78 88.44 89.43 90.46 90.47
MedBN (Ours) 2.80 4.72 5.01 8.20 12.65

Table 12. Error Rate (%) of indiscriminate and instant attack for different batch size B with a consistent 20% of malicious samples.

Batch-size (B)
Dataset Normalization 200 128 64 32 16

CIFAR10-C BatchNorm 31.02 33.14 35.01 40.67 49.85
MedBN (Ours) 22.34 23.83 24.78 28.58 34.81

CIFAR100-C BatchNorm 59.80 62.35 67.07 73.73 83.08
MedBN (Ours) 48.55 49.86 52.88 58.80 67.63

G. Discussion on Median Absolute Deviation (MAD)
We further explore the feasibility of using Median Absolute Deviation (MAD) as an alternative to the mean of squared

deviations (zbchw � ⌘c)2, used in our MedBN. The MAD is calculated as the median of the absolute deviations from the
median of data, formulated as:

med (|zbchw � ⌘c|)bhw . (16)

As discussed in Section 5.1, ⇢c typically computes the mean of squared deviations (zbchw � ⌘c)2 , opting for MAD presents
an alternative method. Our findings reveal that while adopting MAD enhances defense capabilities, specifically in the targeted
attack, it also results in a notable decrease in performance, particularly over ImageNet-C, as detailed in Table 13.

H. Extension of Theorem 1
In this appendix, we extend Theorem 1 for multi-dimensional vectors. For median of multi-dimensional vectors, we consider

coordinate-wise median (cwmed) and geometric median (geomed). The coordinate-wise median is the median along each
dimension. The geometric median is a vector that minimizes the sum of the distances to vectors in B = {xi 2 RC : i 2 [n]}
with a set of n numbers, which is defined as follows:

geomed(B) = argmin
z2Rd

X

xi2B
kz � xik2 . (17)

Note that cwmed is a solution of argmin
z2Rd

P
xi2B kz � xik1.



Table 13. Comparison of BatchNorm, MedBN (our method), and MAD in terms of Attack Success Rate (%) for the targeted and instant
attack scenario and Error Rate (%) for the indiscriminate and instant attack scenario using TeBN. This table also includes Error Rate (%) on
benign samples without attack as per TTA benchmarks.

Dataset CIFAR10-C CIFAR100-C ImageNet-C

m / B 40 / 200 40 / 200 20 / 200

Objective Normalization ER (%)
w/o Attack ASR (%) ER (%)

w/o Attack ASR (%) ER (%)
w/o Attack ASR (%)

BatchNorm 14.92 83.90 40.08 91.78 66.62 97.78
Targeted

Attack
Ours (MedBN) 15.19 19.16 40.77 2.80 69.55 0.36

MAD 18.40 2.93 46.13 0.13 85.08 0.27

Objective Normalization ER (%)
w/o Attack ER (%) ER (%)

w/o Attack ER (%) ER (%)
w/o Attack ER (%)

BatchNorm 14.92 31.02 40.08 59.80 66.62 81.46
Indiscriminate

Attack
Ours (MedBN) 15.19 22.34 40.77 48.55 69.55 69.74

MAD 18.40 23.46 46.13 53.41 85.08 84.99

Theorem 2 (Extension of Theorem 1) Consider a set of n numbers B = {xi 2 RC : i 2 [n]} and 1  m  n where the

first m numbers are possibly manipulated by adversaries. Let Bmal = {xi : i 2 [m]}, and Bben = B \ Bmal.

(i) The mean can be arbitrarily manipulated by a single malicious sample, i.e., for any 1  m  n,

sup
Bmal

kmean(Bmal [ Bben)�mean(Bben)k2 =1 . (18)

(ii) The cwmed or geomed are robust against malicious samples unless they are not the majority, i.e., for any 1  m < n/2.

For the simplicity, we denote the med instead of cwmed or geomed,

sup
Bmal

kmed(Bmal [ Bben)�med(Bben)k2 <1 , and (19)

sup
Bmal

kmed(Bmal [ Bben)�mean(Bben)k2 <1 . (20)

Proof of Theorem 2. First, we prove the vulnerability of mean (18). The k-th coodrinate of kmean(Bmal [
Bben) � mean(Bben)k is mean(Bmal [ Bben)k � mean(Bben)k. Then, kmean(Bmal [ Bben) � mean(Bben)k =qP

C

k=1 |mean(Bmal [ Bben)k �mean(Bben)k|2. Consequently, by (9), the equation (18) holds.
For the second part on the robustness of the median, particularly for the cwmed, we can demonstrate (19) and (20) by using

(11) and (10), similar to the proof of (18). Regarding the geomed, we can use Lemma 9 in [16],

kmed(Bmal [ Bben)�med(Bben)k2 =
1q

1� m2

(n�m)2

max
xj2Bben

kxj �med(Bben)k2 <1 . (21)

Therefore, by (21), the equation (19) holds. Similarly, we can demonstrate the (20).

Remarks. In contrast to cwmed, calculating geomed is computationally expensive as it necessitates an optimization
procedure. Therefore, although geomed can be considered for robust batch normalization, it is challenging to apply it to the
neural network, which generally operates with high dimensional features.

I. Comprehensive Analysis of Malicious Samples on Every BN Layers
For analyzing the effect of MedBN, we plot the t-SNE of features before going through BN layers. For evaluation, we

use Gaussian corruptions in CIFAR10-C with ResNet26 and TeBN for the adaptation method. The attack is implemented for
targeted and instant attack scenario and we use " = 1 for the attack. Figure 8a shows that for the deeper layer, the malicious
samples tend to be clustered and distant from the benign samples to mislead the output of the model.



Additional analysis with constrained ". We conduct a comparative analysis of BN and MedBN under the same setup,
except for using a constrained " value of 8/255. Table 14 shows that the reduced " leads a lower ASR compared to " = 1,
indicating a weaker attack. Moreover, our methods outperforms in both cases, with " = 1 and " = 8/255. We plot the L1

distance as outlined in Section 7.4. Figure 6 and Figure 7 show that MedBN statistics is less influenced by malicious samples
than BN statistics. Comparing the early layers (specifically, in bn1) between attack with " = 1 (the left of the Figure 6) and
attack with " = 8/255 (the right of the Figure 6), we can observe that a smaller " value leads to reduced perturbations in the
early layers. In other words, as the weaker attack, the perturbation for early layers is reduced.

Additionally, we visualize t-SNE of all layers and "’s in Figure 8 and Figure 9. In contrast to BN layers in " = 1 (Figure 8a),
BN layers in " = 8/255 (Figure 9a) shows that malicious samples tend to be clustered and become more distant from benign
samples at deeper layers than under " = 1, indicating a weakened attack. However, as shown in MedBN layers in " = 1
(Figure 8b), MedBN layers in " = 8/255 (Figure 9b) demonstrates that MedBN effectively mitigates the malicious samples to
not be outlier against the benign samples, i.e., malicious samples are closed from the benign samples.

Table 14. Attack Success Rate (%) of targeted and instant attacks for different " by using TeBN.

value of "
Dataset Normalization 8/255 1

CIFAR10-C BatchNorm 58.00 83.91
MedBN (Ours) 16.13 19.16

Figure 6. L1 distance for measuring the amount of perturbation kµ� µbenk1 and k⌘ � ⌘benk1 by malicious samples across various layers,
with " = 1 on the left and " = 8/255 on the right.

Figure 7. L1 distance for measuring the amount of perturbation k� � �benk1 and k⇢� ⇢benk1 by malicious samples across various layers,
with " = 1 on the left and " = 8/255 on the right.



(a) t-SNE visualization of all BN layers (" = 1).



(b) t-SNE visualization of all MedBN layers (" = 1).

Figure 8. t-SNE visualization of all BN layers (Figure 8a) and all MedBN layers (Figure 8b) with " = 1. In Figure 8a, for deeper layers, the
features of malicious samples tend to be distant from benign samples to mislead the outputs of model. However, when we apply MedBN,
Figure 8b demonstrates that malicious samples are closed to benign samples, i.e. the effect of malicious samples is significantly mitigated.



(a) t-SNE visualization of all BN layers (" = 8/255).



(b) t-SNE visualization of all MedBN layers (" = 8/255).

Figure 9. t-SNE visualization of all BN layers (Figure 9a) and all MedBN layers (Figure 9b) with " = 8/255. For the early layers, the
features of malicious samples tend to be more close to those of benign samples as the " is reduced. For deeper layers, similar to Figure 8a,
the malicious samples tend to move away from the benign samples to mislead the model. However, when we apply the MedBN, the impact
of malicious samples is significantly mitigated as shown in Figure 9b.



J. Comprehensive Results of Instant Attack Scenario
We provide detailed results of instant and targeted attack scenario in Table 15 and instant and indiscriminate attack scenario

in Table 16 across all types of corruptions in the TTA benchmark datasets.

Table 15. Extended analysis of Attack Success Rate (%) for targeted and instant attack scenario over all types of corruption (detailed version
of Table 1).

Noise Blur Weather Digital

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.

C
IF

A
R

10
-C

TeBN 82.00 90.00 91.33 76.67 94.00 82.67 80.00 82.00 84.00 89.33 73.33 92.00 86.00 77.33 78.00 83.91
+MedBN 26.00 23.33 22.00 16.00 28.67 16.00 14.67 21.33 16.00 16.67 12.00 16.67 21.33 10.67 26.00 19.16

TENT 73.33 78.00 77.33 57.33 76.00 67.33 68.67 72.67 71.33 72.67 67.33 82.67 74.67 70.00 76.00 72.36
+MedBN 23.33 18.67 19.33 16.00 30.67 16.00 14.00 16.67 12.67 14.67 14.00 19.33 21.33 16.67 22.00 18.36

ETA 70.67 80.67 82.67 71.33 80.00 74.67 75.33 71.33 76.00 81.33 56.67 88.00 76.67 66.67 74.00 75.007
+MedBN 24.67 22.00 21.33 14.67 26.00 14.67 12.00 20.00 12.00 18.00 10.67 16.00 20.00 14.67 23.33 18.00

SAR 74.00 78.67 82.67 69.33 86.00 80.67 77.33 75.33 76.00 77.33 66.67 86.67 83.33 72.67 74.67 77.42
+MedBN 24.00 24.00 17.33 15.33 28.00 14.00 11.33 17.33 14.00 14.67 14.67 16.67 19.33 16.00 24.00 18.04
SoTTA 25.33 20.67 30.00 20.00 24.00 22.00 15.33 21.33 17.33 18.67 22.67 18.00 22.67 21.33 22.67 21.47

+MedBN 7.33 16.67 10.67 6.67 6.67 3.33 6.00 8.00 5.33 6.00 4.00 8.00 12.00 6.67 10.00 7.82
sEMA 24.67 25.33 23.33 14.00 24.67 13.33 14.00 20.00 12.00 12.67 14.67 12.67 19.33 16.00 26.00 18.18

+MedBN 14.00 14.00 14.67 2.00 12.00 6.00 4.00 8.00 6.00 10.00 4.00 6.00 9.33 2.00 18.00 8.67
mDIA 44.00 34.00 52.67 24.00 52.00 28.67 26.00 25.33 20.00 34.00 22.00 36.00 42.00 34.00 34.00 33.91

+MedBN 12.00 14.00 16.00 2.00 10.00 6.00 4.00 8.00 4.00 10.00 4.00 8.00 12.00 3.33 18.00 8.76

C
IF

A
R

10
0-

C

TeBN 96.00 96.00 98.00 77.33 91.33 88.67 86.67 98.00 98.67 99.33 94.00 98.00 88.00 83.33 83.33 91.78
+MedBN 2.67 2.00 2.00 2.00 5.33 2.00 2.00 2.67 2.00 4.00 4.00 2.67 4.00 2.67 2.00 2.80

TENT 78.67 84.67 73.33 81.33 73.33 81.33 65.33 74.67 78.67 88.67 80.67 92.00 84.00 84.00 68.67 79.29
+MedBN 3.33 4.00 4.00 4.00 6.67 3.33 4.67 4.67 2.00 6.67 4.67 4.67 4.67 3.33 2.00 4.18

ETA 78.00 80.67 81.33 84.67 74.00 78.00 71.33 77.33 84.00 92.00 72.67 90.67 84.67 76.67 73.33 79.96
+MedBN 2.00 3.33 2.00 4.00 5.33 3.33 3.33 2.00 2.00 6.00 3.33 2.00 2.67 2.00 2.00 3.02

SAR 86.00 83.33 86.00 74.67 78.67 76.00 70.67 81.33 85.33 93.33 76.00 96.67 79.33 86.00 71.33 81.64
+MedBN 2.00 2.00 2.00 4.00 7.33 1.33 4.00 2.00 1.33 6.00 4.00 2.00 3.33 2.67 1.33 3.02
SoTTA 6.67 10.00 7.33 7.33 12.67 8.00 5.33 8.67 6.67 8.67 4.00 7.33 10.00 3.33 8.00 7.60

+MedBN 2.00 2.00 3.33 2.00 4.67 2.00 2.00 2.00 1.33 1.33 4.00 3.33 4.00 2.67 2.00 2.58
sEMA 10.00 14.67 10.00 8.00 9.33 8.67 4.00 5.33 11.33 10.00 6.67 8.00 9.33 6.00 9.33 8.71

+MedBN 2.00 2.00 2.00 2.00 4.00 2.00 0.00 0.00 0.00 0.00 4.00 2.00 2.00 2.00 0.00 1.60
mDIA 15.33 18.00 22.00 14.00 14.00 16.00 12.00 16.00 18.00 24.00 10.00 24.00 16.00 12.00 18.00 16.62

+MedBN 2.00 4.00 6.00 2.00 4.00 0.00 2.00 2.00 0.00 0.00 4.00 2.00 2.00 0.00 0.00 2.00

Im
ag

eN
et

-C

TeBN 100.00 100.00 100.00 100.00 100.00 100.00 96.00 97.33 94.67 98.67 98.67 100.00 100.00 89.33 92.00 97.78
+MedBN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.33 0.00 0.00 4.00 0.00 0.00 0.00 0.36

TENT 89.33 84.00 88.00 96.00 94.67 96.00 92.00 96.00 94.67 96.00 90.67 100.00 94.67 80.00 80.00 91.47
+MedBN 0.00 1.33 0.00 0.00 0.00 0.00 1.33 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.44

ETA 100.00 100.00 100.00 96.00 100.00 96.00 90.67 92.00 88.00 98.67 96.00 100.00 97.33 77.33 85.33 94.49
+MedBN 0.00 0.00 0.00 0.00 0.00 0.00 2.67 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.44

SAR 66.67 66.67 66.67 66.67 66.67 66.67 65.33 64.00 60.00 66.67 64.00 68.00 66.67 53.33 60.00 64.53
+MedBN 0.00 0.00 0.00 1.33 0.00 0.00 0.00 0.00 1.33 0.00 0.00 2.67 0.00 1.33 0.00 0.44
SoTTA 4.00 5.33 8.00 26.67 14.67 20.00 18.67 14.67 30.67 16.00 12.00 18.67 13.33 16.00 10.67 15.29

+MedBN 0.00 0.00 0.00 0.00 0.00 0.00 1.33 2.67 4.00 0.00 0.00 4.00 0.00 0.00 0.00 0.80
sEMA 0.00 8.00 0.00 16.00 8.00 20.00 16.00 8.00 17.33 24.00 4.00 17.33 8.00 12.00 6.67 11.02

+MedBN 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27
mDIA 24.00 22.67 32.00 37.33 26.67 36.00 36.00 25.33 45.33 40.00 26.67 57.33 28.00 21.33 24.00 32.18

+MedBN 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 4.00 0.00 1.07



Table 16. Extended analysis of Error Rate (%) of indiscriminate and instant attack scenario over all types of corruption (detailed version of
Table 2).

Noise Blur Weather Digital

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.

C
IF

A
R

10
-C

TeBN 35.74 34.37 45.60 23.88 37.95 27.86 20.62 29.76 26.83 40.62 20.82 30.97 32.95 23.65 33.70 31.02
+MedBN 26.60 25.15 35.01 17.23 27.51 20.37 14.75 21.00 18.36 28.19 14.24 20.22 24.93 16.82 24.74 22.34

TENT 32.20 30.72 40.39 23.05 34.92 25.91 20.62 26.91 25.64 28.47 20.66 26.90 31.42 23.93 30.14 28.13
+MedBN 24.12 22.96 32.31 15.78 27.08 17.99 14.59 19.07 17.05 20.22 13.87 18.04 23.88 15.23 22.30 20.30

ETA 30.67 30.05 38.84 22.44 34.10 25.15 20.76 26.46 25.42 27.99 20.50 26.09 30.65 22.67 29.46 27.42
+MedBN 23.42 21.93 31.02 15.04 26.37 17.62 14.20 18.37 16.93 20.13 13.60 17.78 23.12 14.89 22.70 19.81

SAR 32.24 30.30 39.30 22.18 33.52 25.44 20.08 25.71 25.18 29.38 20.16 27.57 30.20 22.33 29.85 27.56
+MedBN 23.36 21.73 30.87 14.96 25.14 17.45 13.84 18.20 16.61 20.24 13.57 18.25 22.86 15.01 21.90 19.60
SoTTA 25.49 23.51 33.12 15.12 26.87 17.30 13.53 19.09 17.34 20.23 14.27 17.56 23.70 15.23 23.62 20.40

+MedBN 21.37 19.78 29.50 11.15 23.23 13.67 10.01 15.00 14.15 14.90 10.66 13.06 19.17 12.14 19.52 16.49
sEMA 27.22 25.65 37.32 14.40 27.90 18.43 12.09 20.28 17.76 26.50 13.11 19.35 23.60 15.08 26.01 21.65

+MedBN 23.68 22.09 33.07 11.00 23.16 14.42 9.18 16.32 14.10 20.85 10.58 14.73 19.32 12.35 21.76 17.77
mDIA 38.78 37.39 50.60 16.82 34.20 23.57 14.23 22.99 19.96 38.50 13.61 36.23 27.04 18.00 27.43 27.96

+MedBN 26.26 25.26 34.70 12.03 24.90 15.97 9.60 16.60 13.69 22.20 9.86 20.53 19.72 13.25 21.37 19.06

C
IF

A
R

10
0-

C

TeBN 66.56 65.76 73.97 49.61 64.98 55.07 45.74 59.85 57.30 71.08 50.01 64.44 60.07 49.70 62.91 59.80
+MedBN 54.39 54.82 63.47 39.26 53.64 43.44 36.08 48.36 45.71 58.51 39.71 50.15 49.33 40.22 51.15 48.55

TENT 60.80 59.45 66.79 47.84 60.47 51.82 45.31 55.78 55.21 58.65 47.08 54.01 57.22 48.24 57.75 55.10
+MedBN 53.77 52.26 60.89 39.68 53.47 42.24 37.10 46.99 45.95 49.69 38.82 45.33 48.19 40.08 49.99 46.96

ETA 60.50 58.90 67.04 47.27 60.60 50.97 44.07 54.27 54.83 57.19 46.33 54.64 56.07 48.23 55.80 54.45
+MedBN 53.38 52.40 61.82 39.34 52.52 42.05 36.35 45.77 45.05 49.99 38.04 44.60 48.07 39.76 49.78 46.59

SAR 63.51 61.82 69.44 48.43 61.60 52.69 46.33 55.21 55.38 59.57 48.31 57.58 57.68 48.99 59.49 56.40
+MedBN 55.16 53.88 63.38 39.98 53.59 42.99 36.49 47.42 46.59 52.34 39.22 46.52 49.95 41.02 51.51 48.00
SoTTA 54.94 54.19 63.48 40.10 54.22 44.14 38.49 48.03 48.08 50.45 39.36 46.16 50.12 41.85 51.31 48.33

+MedBN 53.52 51.94 61.14 37.24 51.32 40.71 35.23 45.16 44.68 46.67 37.09 40.82 47.57 38.51 49.05 45.38
sEMA 53.50 52.80 63.03 37.82 51.65 41.65 34.07 46.85 43.91 56.24 37.94 47.58 47.00 37.32 52.04 46.89

+MedBN 50.87 51.05 59.57 33.60 48.07 37.50 30.90 42.95 40.52 52.24 34.01 42.28 43.89 34.51 48.30 43.35
mDIA 64.90 63.06 72.89 43.07 59.61 49.40 38.27 50.80 48.32 72.11 40.45 77.57 52.47 44.45 54.01 55.43

+MedBN 59.93 57.65 67.90 36.14 52.96 40.41 32.92 44.47 41.89 56.29 34.97 57.40 45.85 39.03 49.77 47.84

Im
ag

eN
et

-C

TeBN 96.96 94.46 96.52 93.47 93.50 85.97 75.93 80.93 83.13 69.50 49.99 96.58 70.21 63.28 71.45 81.46
+MedBN 86.31 85.25 85.36 83.69 84.72 75.56 64.33 68.46 69.99 52.80 37.25 77.99 60.00 52.70 61.63 69.74

TENT 86.54 84.05 86.24 86.71 86.08 77.19 66.77 69.92 74.90 60.79 46.15 89.35 60.77 55.25 61.64 72.82
+MedBN 84.87 83.07 84.07 82.48 83.39 73.50 62.07 66.89 68.89 51.07 35.86 77.04 57.18 50.36 59.44 68.01

ETA 90.81 88.00 90.76 88.37 87.61 77.50 67.86 71.07 75.13 61.63 46.11 87.50 61.45 55.63 62.79 74.15
+MedBN 85.90 84.41 84.86 82.99 83.92 74.37 62.18 66.47 68.69 51.73 35.98 77.03 57.88 51.08 59.63 68.47

SAR 95.42 92.74 94.83 92.15 91.16 82.32 72.15 75.73 77.79 63.24 46.52 92.92 64.96 58.24 65.93 77.74
+MedBN 86.00 85.09 85.73 84.02 84.79 74.92 63.99 68.24 69.81 52.65 36.76 78.36 59.10 52.29 61.29 69.54
SoTTA 78.69 78.14 79.30 80.96 80.99 70.53 60.11 63.37 68.14 52.59 39.32 77.96 55.30 49.95 55.41 66.05

+MedBN 80.41 81.56 80.16 78.65 79.72 69.13 57.18 61.41 65.41 48.27 34.53 72.69 53.19 47.10 53.84 64.22
sEMA 86.24 86.50 85.62 87.26 87.36 78.84 68.13 72.04 74.37 59.49 41.89 86.65 62.88 55.81 65.12 73.21

+MedBN 86.44 87.33 85.73 84.87 84.66 75.85 64.19 68.71 69.62 53.84 36.90 81.81 58.58 53.39 61.42 70.22
mDIA 93.77 92.77 93.22 87.22 87.50 80.57 73.80 77.39 76.65 67.41 43.81 90.10 65.74 61.76 67.51 77.28

+MedBN 87.92 86.90 86.56 79.84 81.54 73.44 64.99 68.14 67.81 52.44 36.58 78.04 58.99 55.19 60.15 69.24



K. Comprehensive Results of Cumulative Attack Scenario
We provide detailed results of cumulative and targeted attack scenarios in Table 17 and cumulative and indiscriminate attack

scenarios in Table 18 across all types of corruptions in the TTA benchmark datasets. The averaged results across all trials
are presented in Table 3. Within the scope of the cumulative attack scenario, we use EATA instead of ETA. EATA includes a
Fisher regularizer that limits substantial change to important parameters, offering benefits in the cumulative scenario.

Table 17. Attack Success Rate (%) of the targeted and cumulative attack scenario over all types of corruptions (full version of Table 3).

Noise Blur Weather Digital

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.

C
IF

A
R

10
-C

TeBN 82.67 90.00 90.67 76.00 94.67 82.67 78.67 82.67 84.67 88.67 74.67 92.00 87.33 76.67 78.67 84.04
+MedBN 26.00 24.00 22.00 16.00 28.67 16.00 15.33 20.67 16.00 16.67 12.00 17.33 20.67 10.67 26.00 19.20

TENT 70.67 76.67 76.67 66.67 84.67 72.00 70.67 70.00 72.00 76.00 62.00 84.67 81.33 74.00 74.67 74.18
+MedBN 22.67 24.67 19.33 15.33 27.33 15.33 16.67 20.00 14.67 18.00 12.67 19.33 20.00 14.00 22.00 18.80

EATA 70.67 80.00 81.33 74.00 85.33 74.67 74.67 72.00 70.67 77.33 67.33 81.33 80.00 68.00 78.67 75.73
+MedBN 26.67 23.33 20.67 18.00 30.00 22.00 19.33 18.00 15.33 20.00 16.67 20.00 24.67 18.00 22.67 21.02

SAR 72.67 78.00 80.00 70.00 82.00 74.00 78.00 72.67 76.00 83.33 68.67 86.00 84.67 73.33 72.67 76.80
+MedBN 25.33 23.33 20.00 15.33 26.00 16.67 10.00 20.00 14.67 14.67 15.33 18.00 22.67 15.33 24.67 18.80
SoTTA 24.67 22.67 26.00 16.00 24.67 18.67 18.00 23.33 16.00 20.67 16.67 18.67 24.67 22.67 24.00 21.16

+MedBN 10.67 16.00 12.00 6.67 8.00 3.33 6.00 11.33 6.00 5.33 6.00 8.00 10.67 7.33 14.00 8.76
sEMA 26.67 23.33 18.67 12.00 26.67 14.00 12.67 12.67 10.00 12.00 8.67 14.67 18.00 10.67 21.33 16.13

+MedBN 11.33 14.00 14.00 2.00 13.33 5.33 4.00 8.00 6.00 8.00 4.00 8.00 8.00 2.00 14.00 8.13
mDIA 44.00 34.67 52.67 24.00 52.00 30.00 26.00 24.67 20.00 34.67 22.67 36.00 42.00 34.00 34.00 34.09

+MedBN 12.00 14.00 16.00 2.00 10.00 6.00 4.00 8.00 4.00 10.00 4.00 8.00 12.00 4.00 19.33 8.89

C
IF

A
R

10
0-

C

TeBN 96.00 96.00 98.00 76.67 90.00 87.33 84.67 98.67 97.33 99.33 93.33 98.00 88.00 84.00 83.33 91.38
+MedBN 2.00 2.00 2.00 2.00 6.00 2.00 2.00 2.00 2.00 4.00 4.00 2.67 4.00 2.00 2.00 2.71

TENT 71.33 75.33 68.67 74.00 72.00 79.33 68.00 77.33 77.33 78.67 74.00 90.00 74.00 72.67 63.33 74.40
+MedBN 2.00 2.00 2.67 4.67 4.00 4.00 4.67 3.33 2.00 4.67 4.67 4.00 4.67 2.67 2.00 3.47

EATA 81.33 78.00 80.00 72.67 75.33 73.33 66.00 78.67 82.00 83.33 68.67 89.33 70.00 68.67 63.33 75.38
+MedBN 2.67 2.00 0.00 3.33 4.67 2.00 4.00 4.00 1.33 2.00 3.33 3.33 3.33 4.00 1.33 2.76

SAR 84.00 86.00 86.00 82.67 75.33 78.00 73.33 84.67 86.00 92.67 75.33 92.67 77.33 81.33 72.67 81.87
+MedBN 2.67 3.33 2.00 5.33 5.33 2.67 3.33 1.33 2.00 6.00 3.33 2.67 3.33 3.33 2.00 3.24
SoTTA 6.67 8.67 10.00 6.67 10.67 6.00 6.67 6.67 9.33 11.33 4.00 9.33 8.00 4.67 6.00 7.64

+MedBN 2.00 2.67 2.00 2.67 4.00 4.00 2.00 2.67 1.33 2.00 3.33 3.33 4.67 2.00 2.00 2.71
sEMA 10.67 14.67 10.00 4.00 10.00 7.33 6.00 6.00 8.67 8.00 6.67 6.67 10.67 6.00 8.67 8.27

+MedBN 2.00 2.00 2.00 0.67 2.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 0.00 0.00 1.24
mDIA 15.33 18.00 22.00 13.33 14.00 17.33 12.00 16.00 18.00 24.00 10.00 24.00 16.00 12.00 17.33 16.62

+MedBN 2.00 4.00 6.00 2.00 4.00 0.00 2.00 3.33 0.00 0.00 4.00 4.00 2.00 0.00 0.00 2.22

Im
ag

eN
et

-C

TeBN 100.00 100.00 100.00 100.00 100.00 100.00 96.00 96.00 94.67 100.00 97.33 100.00 100.00 88.00 92.00 97.60
+MedBN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.27

TENT 84.00 78.67 81.33 88.00 84.00 84.00 85.33 81.33 84.00 94.67 84.00 97.33 94.67 60.00 73.33 83.64
+MedBN 0.00 0.00 0.00 0.00 1.33 0.00 1.33 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.44

EATA 100.00 98.67 100.00 96.00 98.67 92.00 89.33 93.33 88.00 93.33 88.00 100.00 96.00 69.33 82.67 92.36
+MedBN 0.00 0.00 0.00 0.00 1.33 0.00 0.00 0.00 1.33 0.00 0.00 4.00 0.00 0.00 0.00 0.44

SAR 100.00 100.00 100.00 100.00 100.00 100.00 96.00 97.33 92.00 100.00 96.00 100.00 100.00 80.00 92.00 96.89
+MedBN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SoTTA 5.33 8.00 6.67 21.33 22.67 18.67 17.33 13.33 28.00 16.00 12.00 21.33 10.67 21.33 13.33 15.73

+MedBN 0.00 0.00 0.00 2.67 0.00 0.00 1.33 2.67 2.67 0.00 0.00 2.67 0.00 0.00 0.00 0.80
sEMA 8.00 17.33 12.00 18.67 8.00 21.33 16.00 8.00 16.00 24.00 4.00 8.00 8.00 13.33 14.67 13.16

+MedBN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mDIA 33.33 26.67 40.00 32.00 33.33 33.33 40.00 16.00 44.00 38.67 20.00 57.33 21.33 17.33 20.00 31.56

+MedBN 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 4.00 0.00 1.07



Table 18. Error Rate (%) of the indiscriminate and cumulative attack scenario over all types of corruptions (full version of Table 3).

Noise Blur Weather Digital

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel. JPEG Avg.

C
IF

A
R

10
-C

TeBN 35.65 34.44 45.67 23.77 37.92 27.74 20.58 29.86 26.85 40.66 20.77 31.01 32.96 23.65 33.69 35.30
+MedBN 26.76 25.07 35.02 17.18 27.58 20.34 14.70 20.88 18.40 28.25 14.17 20.25 25.00 16.74 24.76 27.22

TENT 34.79 32.67 47.80 25.72 38.49 29.37 23.07 29.47 28.87 32.61 23.32 29.33 34.45 25.52 34.77 35.70
+MedBN 24.86 23.29 34.99 15.10 27.88 17.85 13.80 18.31 17.71 22.18 13.98 19.67 24.33 15.46 22.99 25.84

EATA 35.84 33.09 46.68 24.61 39.32 27.88 22.51 29.11 27.64 31.70 23.47 28.50 35.94 25.10 34.02 35.30
+MedBN 26.52 24.66 35.86 15.72 27.53 20.50 17.15 19.23 17.31 21.63 14.96 22.56 25.34 16.00 24.16 26.84

SAR 30.83 29.07 38.36 21.62 33.22 24.34 20.32 25.23 24.15 27.22 19.87 25.09 29.88 21.57 28.77 31.25
+MedBN 23.00 21.20 30.92 14.52 24.93 16.82 13.27 17.56 16.17 19.33 13.10 17.38 22.72 14.55 21.88 24.29
SoTTA 25.35 24.59 34.17 15.47 28.35 17.77 14.32 19.52 17.75 21.34 14.69 19.55 23.92 16.27 23.71 26.10

+MedBN 22.52 20.42 30.98 11.61 23.32 13.95 10.94 16.18 14.52 15.87 11.04 15.85 19.84 13.28 20.00 22.52
sEMA 29.10 27.45 39.19 17.51 29.48 20.45 14.63 22.25 18.96 32.03 15.15 23.96 25.52 18.20 27.08 28.79

+MedBN 25.35 23.49 33.90 14.97 25.62 18.51 13.31 19.12 16.77 26.26 12.47 18.20 23.09 14.97 23.64 25.62
mDIA 38.67 37.37 50.68 16.76 34.20 23.58 14.22 23.04 20.04 38.55 13.62 36.19 26.99 18.03 27.40 32.05

+MedBN 26.32 25.20 34.67 12.00 24.84 16.00 9.56 16.62 13.64 22.11 9.87 20.54 19.69 13.24 21.36 23.96

C
IF

A
R

10
0-

C

TeBN 59.67 58.49 61.26 42.36 55.96 49.35 39.85 51.24 48.82 59.46 45.40 59.62 50.70 45.82 52.61 52.04
+MedBN 43.64 45.12 52.97 30.25 44.35 32.25 28.77 37.01 33.22 49.61 31.11 40.82 40.94 30.05 38.15 38.55

TENT 57.07 54.94 63.90 41.09 56.35 44.32 40.18 51.72 49.54 54.25 42.06 53.19 50.77 41.94 49.65 50.06
+MedBN 43.82 40.33 47.09 30.12 46.18 33.86 29.49 37.36 39.50 42.25 28.74 37.73 36.41 33.17 38.60 37.64

EATA 52.49 50.88 60.00 39.29 53.75 44.07 39.09 46.35 47.17 51.90 39.11 48.40 48.91 40.27 51.11 47.52
+MedBN 40.62 41.12 48.30 31.75 41.37 31.50 26.92 35.45 34.81 40.87 28.43 38.06 39.45 31.39 40.91 36.73

SAR 51.39 50.32 55.06 40.06 51.30 41.36 36.46 43.92 47.64 50.51 39.70 45.07 46.44 39.18 47.05 45.70
+MedBN 42.29 41.47 47.93 27.83 40.45 33.24 25.26 35.55 35.15 42.26 29.75 39.21 36.61 29.75 41.14 36.53
SoTTA 44.10 42.92 50.09 28.53 43.43 34.78 29.47 41.13 38.85 42.48 27.67 40.34 38.16 32.75 38.37 38.21

+MedBN 41.07 38.67 45.63 26.71 37.17 29.54 25.07 33.97 34.90 33.85 27.05 32.43 35.52 29.23 36.71 33.84
sEMA 41.95 44.95 47.57 28.43 46.33 35.59 28.93 36.75 37.20 46.40 29.37 42.28 37.73 28.75 41.43 38.24

+MedBN 36.40 39.76 46.11 27.47 40.11 29.85 25.90 33.25 31.49 43.04 27.56 36.48 35.65 27.17 36.34 34.44
mDIA 52.12 52.81 60.54 37.40 50.35 41.74 29.54 40.60 39.53 64.64 29.67 72.37 43.61 37.01 41.84 46.25

+MedBN 45.33 42.47 53.33 27.42 41.30 30.27 25.97 32.96 31.94 43.51 24.66 50.98 32.61 30.66 35.82 36.62

Im
ag

eN
et

-C

TeBN 97.10 94.53 96.50 93.42 93.36 86.07 76.11 80.95 83.20 69.33 50.19 96.64 69.92 63.12 71.59 81.47
+MedBN 86.18 85.34 85.22 83.63 84.72 75.52 64.36 68.40 69.96 52.86 37.36 77.96 59.88 52.73 61.42 69.70

TENT 85.81 85.02 85.58 86.80 86.71 77.39 65.66 71.18 74.67 58.31 43.58 90.76 60.86 53.75 60.09 72.41
+MedBN 84.72 83.66 83.88 82.21 83.55 74.88 61.96 66.28 68.89 50.84 36.43 76.70 57.30 50.40 59.96 68.11

EATA 95.64 92.59 94.10 90.44 91.20 80.29 68.27 74.44 76.41 61.84 44.06 91.86 62.01 54.25 63.00 76.03
+MedBN 85.45 84.16 84.89 82.79 83.64 74.59 61.71 66.32 68.85 51.13 35.81 76.21 57.08 50.96 59.61 68.21

SAR 96.27 93.21 95.61 91.90 90.68 81.10 70.97 74.60 77.28 62.92 46.45 93.22 64.24 57.85 65.52 77.46
+MedBN 86.36 85.60 85.58 83.55 84.67 75.50 63.93 68.05 70.22 52.67 36.93 78.27 58.96 52.05 61.13 69.56
SoTTA 81.20 80.61 81.10 81.95 83.69 71.89 61.56 65.08 68.78 53.28 39.38 77.87 56.13 50.47 56.33 67.29

+MedBN 82.59 81.93 81.49 78.26 79.83 69.16 57.51 61.71 64.97 48.00 34.70 71.45 53.00 46.96 53.94 64.37
sEMA 88.99 87.84 88.90 88.24 88.35 80.55 70.83 74.97 76.28 63.30 44.18 86.87 65.04 57.49 66.37 75.21

+MedBN 89.27 87.18 87.41 84.06 84.59 75.55 64.47 69.00 69.98 53.85 37.89 79.76 59.85 53.29 61.88 70.54
mDIA 93.83 92.73 93.24 87.04 87.59 80.50 73.73 77.39 76.62 67.27 43.72 90.02 65.67 61.64 67.53 77.24

+MedBN 87.90 86.92 86.53 79.83 81.59 73.44 65.02 68.13 67.81 52.41 36.44 78.04 58.90 55.15 60.13 69.22



L. Error Rates without Attacks
To evaluate the performance of the model under a normal TTA setup, we utilize ER on benign samples without attacks in

Table 19. It provides an understanding of how the model behaves in a non-adversarial environment, i.e., the model’s baseline
effectiveness, establishing a fundamental metric for comparison against scenarios involving attacks.

Table 19. Error Rate (%) on benign samples without attacks.

Method
ER (%) B / m Normalization TeBN TENT ETA SAR SoTTA sEMA mDIA

BatchNorm 14.92 13.68 13.14 13.28 13.73 14.87 15.31CIFAR10-C 200 / 40
(20%) Ours (MedBN) 15.19 14.12 13.67 13.35 14.06 15.14 15.20

BatchNorm 40.08 37.74 37.44 39.30 41.22 39.72 41.72CIFAR100-C 200 / 40
(20%) Ours (MedBN) 40.77 39.66 39.62 41.32 42.26 40.47 41.79

BatchNorm 66.62 61.08 59.13 62.13 60.87 68.35 66.62ImageNet-C 200 / 20
(10%) Ours (MedBN) 69.55 68.38 66.20 66.65 64.39 70.18 68.27

M. Examples of Malicious Samples

(a) Visualization of benign samples.

(b) Visualization of malicious samples (" = 8/255).

Figure 10. Visualization of test samples from CIFAR10-C benchmark with Gaussian noise and severity level 5. Malicious samples are hardly
distinguished from benign samples.


