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The supplementary and its contents are summarized as
follows:
• Related works: Brief reviews for the existing semi-

supervised learning and state-of-the-art methods.
• Details of architecture: Detail structures of the encoder,

projector, and classifier. The number of trainable param-
eters.

• Distance measurement: Extensive experiments to com-
pare the distance measurement on the embedding space.

• Training descriptions: Learning rate, batch size, opti-
mizer parameters, the number of data, weak and strong
augmentations, learning rate scheduler, and iteration
steps.

6. Related Works
Semi-supervised learning. The optimization formula of
consistency regularization on the semi-supervised learning
for image classification can be summarized as follows:

LSSL = Lsup + Lunsup, (15)

where Lsup represents the supervised learning loss such as
the cross-entropy. Lunsup is the regularization term to en-
courage the consistent prediction of the unlabeled data.
Pseudo labeling [19] of the unlabeled data applies a self-
supervision of the high-confident samples as follows:

Lunsup =
1

µB

µB∑
i=1

I[max(hi)≥τ ]H(ŷi, f(p(x
u
i ))), (16)

where hi is the probability prediction of the unlabeled im-
age (xu

i ). ŷi is the one-hot-encoded vector of hi. τ rep-
resents a threshold value. p represents the stochastic per-
turbation described in Sec. 1. µB is the batch size of the
unlabeled data. H represents a criterion that measures the
distance or discrepancy between two vectors such as the
cross-entropy. Thus, high-confident unlabeled samples are
used as the labeled data to extend the training data with their
predicted class by the trained model.
FixMatch [30] uses cross-entropy loss between the pseudo
label derived from the weakly augmented version (ŷα)
of the unlabeled sample α(xu) and the prediction of the
strongly augmented version (ŷA) of the unlabeled sample
(A(xu)) as follows:

Lunsup =
1

µB

µB∑
i=1

I[max(hi)≥τ ]H(ŷi, f(A(xu
i ))), (17)

Group name Output size Block type

Input H ×W -
Conv 1 H ×W

[
3× 3, 16

]
Conv 2 H ×W

[
3× 3, 32
3× 3, 32

]
×N

Conv 3 H/2×W/2

[
3× 3, 64
3× 3, 64

]
×N

Conv 4 H/4×W/4

[
3× 3, 128
3× 3, 128

]
×N

Average Pooling 1×1
[
H/4×W/4

]
Table 7. Structure of (a) feature extractor in Wide-ResNet-28-w2.

where A is the strong augmentation. Unlike the pseudo
labeling, hi represents the prediction of the weakly aug-
mented samples. Thus, FixMatch employs consistency reg-
ularization by minimizing the discrepancy between two dif-
ferently augmented images.
Dash [37] applies pseudo labeling to the unlabeled data
having a lower consistency loss than the cross-entropy loss
of the supervised learning as follows:

Lsup =
1

N

N∑
n=1

C∑
c=1

−y(i, c) log ŷl(i, c),

Lunsup =
1

µB

µB∑
i=1

I[H(ŷα(i),ŷA(i))≤τ ]H(ŷα(i), ŷA(i)),

τ = Cγ−(t−1)Lsup,
(18)

where Lsup represents the cross-entropy of the labeled data.
C and γ is the predefined constants and t represents a train-
ing step. The high-confident unlabeled samples, which have
the lower cross-entropy between the ŷα and ŷA than the
Lsup, are used for the pseudo labeling. By this, the thresh-
old value is dynamically set depending on the learning sta-
tus of a model with the labeled data.

7. Details of Architecture
Encoder. Tables 7 and 8 show the encoder (g) structures
of Wide-ResNet-28-w2 and Wide-ResNet-28-w8, respec-
tively. N was the number of blocks in a group and was set
to 4 in our experiments. The down-sampling is performed
by the first layers in groups Conv 3 and Conv 4. A batch
normalization and a rectified linear unit (ReLU) activation



(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Figure 4. The comparison of global distance measurement with MG on the test phase in the embedding space. The cross-entropy (CE)
between predictions and ground-truth was provided as the index of the classification performance of the model rather than the purpose of
the distance comparison.

Group name Output size Block type

Input H ×W -
Conv 1 H ×W

[
3× 3, 16

]
Conv 2 H ×W

[
3× 3, 128
3× 3, 128

]
×N

Conv 3 H/2×W/2

[
3× 3, 256
3× 3, 256

]
×N

Conv 4 H/4×W/4

[
3× 3, 512
3× 3, 512

]
×N

Average Pooling 1×1
[
H/4×W/4

]
Table 8. Structure of feature extractor in Wide-ResNet-28-w8.

Dataset CIFAR-10 CIFAR-100 SVHN STL-10

#Params. 1.5M 23M 1.5M 1.5M

Table 9. The number of the trainable parameters.

are applied between each convolution. H and W represent
the height and width of an input image.

Projector. Table 10 shows the structure of the projector
(P) consisting of three linear layers. The L2-normalization
(Norm.) layer is placed as the last layer.

Classifier is constructed only with one linear layer without
an activation function.

Table 9 shows the number of trainable parameters de-
pending on the conventional datasets. In particular, the
number of parameters in the CIFAR-10 experiment is larger
because the Wide-ResNet-28-w8 was used as the back-
bone, which is a large-depth version compared to the Wide-
ResNet-28-w2.

Layer name Input size Output size
Widen factor (W ) W = 2 W = 8 W = 2 W = 8

Input 128 512 - -
Dense 1 128 512 128 512
Batch Norm. - - 128 512
ReLU - - 128 512
Dense 2 128 512 128 512
Batch Norm. - - 128 512
ReLU - - 128 512
Dense 3 128 512 128 512
L2-Norm. - - 128 512

Table 10. The structure of the projector in the proposed method.

8. Distance Measurement

We measured the distance between different views in the
embedding space on the test data. This depicts the remark-
able effectiveness of the proposed metric tensor in terms of
distance measurement. Specifically, we calculated the dis-
tance between two differently augmented test images on the
embedding space with two measurements: mean squared
errors (MSE) in Eq. 1 and MSE with metric tensor (MG) in
Eq. 2. We generated the two different views by using weak
and strong augmentations.

Figure 4 shows the results of the distance measurement
on the embedding space depending on the datasets. We
displayed the average cross-entropy and distances from the
test images. The cross-entropies between predictions and
ground truth were provided as the index of the classifica-
tion performance of the model rather than the purpose of the
comparison. We compared the distance values by using the
proposed method. Note that, it is difficult to compare the
proposed and the benchmark methods because all the fea-
ture spaces from the different models were quite different.
Nevertheless, the comparison results provided a consider-



Figure 5. The comparison of class-wise distance measurement with ML on STL-10 dataset in the embedding space. This figure is extracted
by the number of 1,000 labeled data scenario.

Key CIFAR-10 CIFAR-100 SVHN STL-10

N 32 32 32 32
µB 64 64 64 64
Optimizer SGD SGD SGD SGD
Learning rate 0.03 0.03 0.03 0.03
Momentum 0.9 0.9 0.9 0.9
Weight decay 0.0005 0.001 0.0005 0.0005
m 0.99 0.99 0.99 0.99
Iteration 1M 1M 1M 1M

Table 11. Important parameters setting for the proposed method.

able aspect. For example, Fig. 4 showed that the distance
between two views returns a smaller MSE than MSE with
MG. These occurred for all extensive experiments. These
depicted that there is a more complex relationship between
two embeddings in terms of the semantic distance rather
than expressing the Euclidean distance. In other words, the
proposed method calculates the distance by considering the
geometric curvature of the embedding space rather than cal-
culating the distance in Euclidean space, so it can be in-
terpreted that the MSE with metric tensor (MG)-based dis-
tance is derived to be larger than the MSE-based distance.

Figure 5 shows the distance measurements on the STL-
10 dataset. We compared the distance in the same manner
in Fig. 4. The only difference was that each class was sep-
arately calculated with a class-wise metric tensor (ML

c ). As
shown in this figure, the distance between the two views was
differently observed which means the local metric tensor
induced the different geometric structure in the embedding
space. Thus, the class-wise distance empirically showed the
variety of the embedding spaces depending on the class.

9. Training Descriptions
Data populations. The number of training and test data
in the CIFAR family are 50K and 10K, respectively. The

SVHN composes 73,257 samples for training and 26,032
samples for testing. The STL-10 dataset involves 105,000
samples for training and 8,000 samples for testing. The la-
beled and unlabeled data are divided into two groups based
on the predefined SSL scenarios.
Hyper-parameters. Table 11 shows the specification of the
training setup depending on the dataset. We unified the al-
most hyper-parameters as much as possible based on the
previous works [33].
Augmentations. We applied the RandomHorizontalFlip,
RandomCrop, and Normalize as the weak augmentation. In
addition, AutoContrast, Brightness, Color, Contrast, Equal-
ize, Identity, Posterize, Rotate, Sharpness, Shearing, So-
larize, and Translate were additionally used as the strong
augmentation. The strongly augmented image is gener-
ated by combining the three augmentations. We applied the
warmup cosine schedule [28] with ten warmup steps.
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