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Supplementary Material

The supplementary materials cover baseline informa-
tion (§A), additional details on main experiments (§B),
and ablation studies (§C) including pre-trained knowl-
edge tuning (§C.1), modulation prompts (§C.2), seman-
tic knowledge distillation loss (§C.3), and further analysis
for the performance (§C.4). Also included are PKT for
domain-specific knowledge (§D), analysis of transferabil-
ity (§E), limitation of prefix tuning (§F), and visualization
of entropy-based divergence loss effectiveness (§G).

A. Details of Baseline

CEC. In Zhang et al. [40], a graph attention network
(GAN) acts as a classifier. The feature extractor is trained
for strong base knowledge, and the GAN adapts to novel
class knowledge in incremental sessions. GAN parameters
increase with each new session. In our experiments, we par-
tially trained the first two feature extractor layers for stable
GAN training.

NC-FSCIL. Yang et al. [39] proposed the framework in-
spired by neural collapse (Papyan et al. [22]) which aims
to align between the feature and corresponding weight of
the classifier. NC-FSCIL pre-assigned the set of classifier
prototypes which is formed as a simplex equiangular tight
frame (ETF). NC-FSCIL proposed aligning a classifier with
prototypes to enhance the performance of the classifier.

WaRP. Kim et al. [12] introduced the weight space rota-
tion process which is called WaRP. They change the trained
weight space into a new space where most of the important
previous knowledge is condensed into a few parameters. It
means WaRP can train the network to capture the knowl-
edge in incremental sessions without suffering catastrophic
forgetting.

L2P. In Wang et al. [37], L2P is a prompt-based frame-
work for class incremental learning, leveraging a pre-
trained vision transformer. Using the prompt pool, L2P
selects a prompt based on input samples and fine-tunes it
for training. We adopted a single prompt during training to
avoid performance deterioration from expanding prompts
and omitted the prompt selection process.

DualPrompt. In Wang et al. [36], DualPrompt excels in
class incremental learning by training G-Prompt and E-
Prompt separately. It dynamically expands E-Prompt to re-
tain task-specific knowledge. Similar to L2P, in our exper-
iment, we used a single G-Prompt and E-Prompt, respec-
tively and omitted prompt selection during evaluation.

B. More Details for Main Experiments

We presented the average accuracy across five simulations
on CUB200, CIFAR-100, and miniImageNet. The high-
est and second-highest performances were indicated by bold
and underlined text, respectively.

As shown in Table S1. Our method outperformed others
in all sessions, except the base session with ViT-B. In con-
trast to prior approaches suffering significant performance
drops with new class arrivals, our method demonstrated a
minor performance decline. Notably, prompt-based meth-
ods like L2P and DualPrompt performed less effectively
than baselines. While prompt-based methods show promis-
ing performance in class incremental learning, their effec-
tiveness diminished in FSCIL where transferability is cru-
cial. Due to the limited trainable parameters of prompts,
they struggle to capture sufficient domain-specific knowl-
edge in the base session, impeding effective transfer to in-
cremental sessions. Our method, PriViLege, designed to
transfer diverse and domain-specific knowledge leveraging
prompts, successfully mitigated catastrophic forgetting in
FSCIL, aiding newly introduced classes.

In Table S2, we reported the performance on CIFAR-
100. Our method, PriViLege, consistently outperformed
other baselines in every incremental session. It is notewor-
thy that in training session 4, our method exhibited an en-
hanced performance of approximately +0.28% compared
to the previous session. This improvement is particularly
significant considering that WaRP, the second-highest per-
former, experienced a substantial performance decline of
about −2.11% in the same session. The notable perfor-
mance gain of our proposed method emphasizes its robust
transferability, which not only contributes to forward trans-
fer but also marginally contributes to positive backward
transfer.

In Table S3, utilizing a network pre-trained on
ImageNet-21K (Russakovsky et al. [28]), our method
demonstrated the highest performance among all datasets.
CEC exhibited a secondary performance, attributed to its
partial network training. Surprisingly, our method reported
minimal knowledge forgetting even after training all ses-
sions. It is noteworthy that methods leveraging pre-trained
knowledge, such as L2P and DualPrompt, showed com-
petitive performance with existing FSCIL methods such as
WaRP and NC-FSCIL. This observation underscores the
significance of considering how to effectively leverage pre-
trained knowledge when employing a ViT in FSCIL.



Sessions
Method

ABase 1 2 3 4 5 6 7 8 9 ALast

AAvg

Fine-Tuning + Proto ψ 84.21±0.13 66.43±3.40 25.00±14.47 25.44±6.70 16.19±12.58 4.58±3.34 1.42±1.03 1.49±0.80 3.62±3.94 5.50±5.67 3.79±1.47 21.60±1.32

CEC[CVPR’21] 75.40±8.01 73.23±8.32 72.00±8.25 68.70±8.43 69.35±8.68 67.78±7.88 67.01±7.79 66.40±8.04 65.78±8.10 65.57±7.95 65.70±8.03 72.41±1.18

L2P[CVPR’22] 44.97±2.32 30.28±6.67 27.21±6.04 24.44±5.44 22.41±4.87 20.81±4.49 19.47±4.24 18.19±4.09 17.16±3.87 16.26±3.65 15.41±3.45 24.99±4.30

DualPrompt[ECCV’22] 53.37±1.83 45.99±2.58 41.15±2.85 37.33±2.86 34.32±2.72 31.57±2.45 29.44±2.34 27.58±2.20 25.92±2.24 24.55±2.12 23.25±2.02 36.30±2.39

NC-FSCIL[ICLR’23] 78.49±2.32 71.52±2.11 65.54±1.93 60.30±1.78 55.81±1.65 51.96±1.53 48.72±1.44 45.78±1.35 43.18±1.27 40.92±1.21 38.80±1.14 57.92±1.71

WaRP[ICLR’23] 67.74±5.57 64.21±5.54 61.06±5.90 57.80±5.93 55.78±5.96 53.81±6.08 52.82±6.25 51.61±6.47 50.13±6.27 50.02±6.23 49.36±6.56 55.85±6.06

PriViLege (Ours) 82.21±0.20 81.25±0.20 80.45±0.20 77.76±0.41 77.78±0.47 75.95±0.40 75.69±0.41 76.00±0.33 75.19±0.45 75.19±0.47 75.08±0.52 77.50±0.33

Table S1. The performance of every session on CUB200.

Method
Sessions

AAvg
ABase 1 2 3 4 5 6 7 ALast

Fine-Tuning + Proto ψ 91.36±0.15 73.95±1.38 41.61±12.23 40.46±10.96 41.69±9.77 13.96±8.53 16.45±10.66 8.71±5.90 5.19±0.13 37.04±1.06

CEC[CVPR’21] 74.20±2.03 71.49±2.13 70.11±2.54 67.34±2.88 65.96±2.64 65.14±3.36 64.74±3.96 63.48±4.09 61.48±3.33 67.10±2.92

L2P[CVPR’22] 83.29±0.50 76.81±0.43 71.29±0.43 66.53±0.39 62.38±0.36 58.68±0.38 55.42±0.36 52.49±0.33 49.87±0.31 64.08±0.39

DualPrompt[ECCV’22] 85.11±0.29 78.42±0.29 72.81±0.35 67.92±0.35 63.69±0.29 59.92±0.26 56.60±0.23 53.62±0.21 50.93±0.21 65.45±0.27

NC-FSCIL[ICLR’23] 89.51±0.23 82.62±0.21 76.72±0.19 71.61±0.18 67.13±0.17 63.18±0.16 59.67±0.15 56.53±0.14 53.70±0.14 68.96±0.17

WaRP[ICLR’23] 86.20±1.46 82.58±1.53 79.30±1.77 75.57±1.66 73.46±1.61 71.07±1.69 69.58±1.80 67.70±1.85 65.48±1.87 74.55±1.67

PriViLege (Ours) 90.88±0.20 89.39±0.23 88.97±0.15 87.55±0.24 87.83±0.24 87.35±0.24 87.53±0.25 87.15±0.21 86.06±0.32 88.08±0.20

Table S2. The performance of every session on CIFAR-100.

Method
Sessions

AAvg
ABase 1 2 3 4 5 6 7 ALast

Fine-Tuning + Proto ψ 93.67±0.02 87.12±5.61 73.54±15.17 50.29±16.74 26.39±17.13 7.29±0.02 23.52±18.90 29.74±4.40 9.87±5.42 44.60±0.92

CEC[CVPR’21] 87.43±5.90 85.99±6.70 84.03±7.03 83.21±7.28 83.11±7.16 81.64±7.66 80.66±7.56 80.72±7.56 80.74±7.51 83.06±7.14

L2P[CVPR’22] 94.59±0.21 87.49±0.45 81.18±0.49 75.76±0.45 71.05±0.39 66.86±.0.36 63.15±0.34 59.82±0.32 56.84±0.32 72.97±0.36

DualPrompt[ECCV’22] 95.05±0.20 87.81±0.19 81.51±0.21 76.07±0.21 71.38±0.12 67.19±0.15 63.45±0.12 60.15±0.10 57.14±0.11 73.31±0.15

NC-FSCIL[ICLR’23] 77.25±0.42 71.30±0.39 66.21±0.36 61.80±0.34 57.94±0.32 54.53±0.30 51.50±0.28 48.79±0.27 46.35±0.25 59.52±0.33

WaRP[ICLR’23] 83.30±1.06 80.53±1.48 77.22±1.01 74.99±1.50 73.64±0.97 71.52±1.07 69.16±0.84 68.79±0.79 67.97±1.28 74.13±1.08

PriViLege (Ours) 96.68±0.06 96.49±0.05 95.65±0.15 95.54±0.13 95.54±0.13 94.91±0.16 94.33±0.15 94.19±0.12 94.10±0.13 95.27±0.11

Table S3. The performance of every session on miniImageNet.



PKT Components CUB200

LT Modulation B+VL ABase ALast AAvg

84.21±0.13 3.79±1.47 21.60±1.32

✓ 65.31±1.81 51.04±1.36 57.47±1.51

✓ 76.43±0.35 60.32±0.73 67.38±0.41

✓ ✓ 76.20±0.41 61.47±0.83 67.86±0.52

✓ 74.48±0.14 64.75±0.99 68.66±0.52

✓ ✓ 77.38±0.82 68.09±1.02 71.42±0.80

✓ ✓ 78.30±1.55 68.58±2.68 72.07±1.90

✓ ✓ ✓ 79.06±0.77 70.81±0.76 73.36±0.77

Table S4. Further ablation experiment for PKT on CUB200. Mod-
ulation denotes leveraging modulation prompts and B+VL denotes
prefix tuning the B-Prompt and prompt tuning the VL-Prompt.

C. Additional Ablation Studies
We conducted additional ablation studies to confirm the ef-
fectiveness of each proposed component, focusing on pre-
trained knowledge tuning, modulation prompts, and seman-
tic knowledge distillation loss.

C.1. Ablation Study for PKT
In Table S4, we conducted an ablation study on pre-trained
knowledge tuning. Our baseline (row 3) utilized fine-tuning
with a prototype classifier ψ. Rows 4 to 6 did not incorpo-
rate layer tuning. In Table S4, we observed a gradual perfor-
mance enhancement with the proposed pre-trained knowl-
edge tuning. Notably, employing all proposed components
showed the highest performance in both ALast and AAvg .

We observed that the absence of layer tuning led to lower
performance in the base session compared to its presence.
This observation highlights the importance of layer tuning
for acquiring sufficient domain-specific information, espe-
cially given the limited capacity of a fixed model. Addition-
ally, relying solely on modulation prompts recorded lower
performance than leveraging only learnable prompts like
B-Prompt and VL-Prompt. Modulation prompts, designed
to facilitate learnable prompt updates, struggled to provide
useful knowledge for prefix tuning. Consequently, adopt-
ing only B-Prompt and VL-Prompt yielded better perfor-
mance than solely relying on modulation prompts, empha-
sizing their additional capacity, irrespective of layer tuning.

Additionally, we observed that adopting modulation
prompts with additional learnable prompts showed perfor-
mance enhancement in ALast and AAvg regardless of layer
tuning. Since the modulation prompts can contribute to
the update of the learnable prompts, additional prompts,
especially B-Prompt, can capture more effective domain-
specific knowledge via the modulation prompts. Lastly,
we observed the most promising performance when we

Prefix Tuning CUB200

Key Value ABase ALast AAvg

PG
M 78.29±0.27 69.14±0.63 72.34±0.30

PS
M 78.68±0.17 69.94±1.14 72.91±0.25

PS
M PG

M 79.06±0.77 70.81±0.76 73.36±0.77

Table S5. Further ablation experiment for the modulation prompts.

LSKD CUB200
LKD LCE ABase ALast AAvg

79.06±0.77 70.81±0.76 73.36±0.77
✓ 80.24±0.59 71.59±0.58 74.51±0.13
✓ ✓ 82.10±0.57 73.44±0.40 76.27±0.30

Table S6. Further ablation experiment for semantic knowledge
distillation on CUB200.

adopted all the proposed components. The proposed pre-
trained knowledge tuning can contribute to capturing ef-
fective domain-specific knowledge at the base session due
to the additional B-Prompt and VL-Prompt assisted by the
modulation prompts while preserving pre-trained knowl-
edge through partial layer tuning.

C.2. Ablation Study for Modulation

For an analysis of the modulation prompt, we conducted an
additional ablation study on CUB200. We assessed the ef-
fectiveness of the head-specific prompt PS

M and the generic
prompt PG

M by separately incorporating each prompt in pre-
fix tuning. As shown in Table S5, relying solely on each
head-specific prompt or generic prompt resulted in lower
performance compared to leveraging both prompts simul-
taneously. Since the modulation prompts are constructed
in different layers, with the head-specific prompt originat-
ing from the MSA layer and the generic prompt from the
MLP layer, the head-specific prompt can contribute to scal-
ing the attention score of the B-Prompt, capturing addi-
tional relationships between key vectors. Meanwhile, the
generic prompt affords the incorporated knowledge with
the B-Prompt through the scaling value vectors. Thus, we
demonstrated that utilizing modulation prompts is highly
beneficial to assist B-Prompt in prefix tuning.

C.3. Ablation Study for LSKD

The proposed semantic knowledge distillation loss com-
prises knowledge distillation loss and cross-entropy loss. To
thoroughly assess its effectiveness, we conducted an addi-
tional ablation study using only PKT as the baseline. As
indicated in Table S6, our proposed semantic knowledge
distillation loss exhibited a gradual improvement in perfor-
mance. Especially, it is noteworthy that the cross-entropy
loss significantly contributes to performance enhancement
across all metrics, due to the reduction of heterogeneity be-



CIFAR-100 ABase ALast AAvg Fgt

CLIP-FT 79.43 33.64 50.65 45.79
CLIP-LP 82.20 48.51 58.95 33.69

LP-DiF*-CLIP 80.23 72.02 75.12 8.21
PriViLege-CLIP 84.25 78.35 77.16 5.90

Table S7. Experiments of fine-tuning (FT) and linear proving (LP).
The performance of LP-DiF* comes from the original paper.

CUB200 ABase ALast AAvg

CEC (ViT-S) 78.51 70.10 72.93
WaRP (ViT-S) 72.56 56.96 62.54

PriViLege (ViT-S) 80.25 72.24 74.89
CEC (ViT-L) 76.78 69.45 71.82

WaRP (ViT-L) 78.83 62.64 68.38
PriViLege (ViT-L) 83.79 76.43 79.20

Table S8. Experiments of adopting ViT-S and ViT-L on CUB200.

tween two different spaces.

C.4. Further Analysis for the Performance

We conducted further experiment to compare our method
with the LP-DiF [8] which is based on CLIP. Table S7
shows that PriViLege recorded better performance and
lower forgetting than LP-DiF. We also analyzed the scal-
ability of our proposed method. In Table S8, our method
showed improved performance when the capacity of the
base model is increased. Experimental results shows that
our method can expect performance enhancement in a more
strong base model.

C.5. Considering Pre-trained Base Model

The pre-trained dataset, ImageNet-21K, includes almost all
classes in the dataset used in experiments. For example,
CIFAR-100 and CUB200 include 12 and 150 exclusive
classes, respectively. We conducted further experiments
to prove that the performance enhancement stems from the
proposed method, PriViLege. Table S9 shows our superior
performance on FGVC-aircraft, a dataset non-overlapped
with ImageNet-21K. Moreover, Table S10 presents our re-
markable performance even when training from scratch.
These results support the superiority of our method regard-
less of the base model.

D. PKT for Domain-Specific Knowledge
To confirm the effectiveness of pre-trained knowledge tun-
ing in capturing domain-specific knowledge, we conducted
additional analysis on CUB200. This aimed to clarify the
reasons for performance enhancement through the proposed
PKT. Figure S1 displays the attention map of FR-B-Prompt,
representing the use of a learnable prompt via prefix tun-
ing on the frozen ViT, alongside the map of our proposed

FGVC-aircraft ABase ALast AAvg

CEC 23.05 16.85 19.46
WaRP 24.85 15.69 19.67

PriViLege (Ours) 58.30 45.55 50.87
Table S9. Experiments on FGVC-aircraft.

CIFAR-100 ABase ALast AAvg

CEC 8.30 4.76 6.09
WaRP 35.82 23.30 28.85

PriViLege 50.37 30.83 39.05
Table S10. Experiments of ViT-B scratch.

Figure S1. Attention map to assess the effectiveness of the pro-
posed PKT on CUB200. FR-B-Prompt denotes prefix tuning
learnable prompt with frozen ViT.

PKT. While FR-B-Prompt trained learnable parameters like
B-Prompt using prefix tuning through the frozen ViT, the
proposed PKT trained B-Prompt and modulation prompt
with prefix tuning and also fine-tuned partial layers. For
visualization, we trained a learnable B-Prompt but con-
structed the attention mask using only image tokens. As
illustrated in Figure S1, we observed that the attention map
of our proposed PKT exhibited greater activation towards
the object compared to FR-B-Prompt. Unlike the attention
map of FR-B-Prompt, the attention map of our proposed
PKT was more focused on the object rather than the back-
ground. Through this observation, we demonstrate that our
proposed PKT primarily aims to extract knowledge from the
object. Since our PKT fine-tuned some pre-trained layers
and trained B-prompt using the modulation prompt, which
facilitated prefix tuning, our PKT can effectively capture
domain-specific knowledge through the fine-tuned layers
and more efficiently through the B-Prompt facilitated by
the modulation prompts. Thus, our PKT can capture more



(a) Comparison of the fisher information to assess the transferability. (b) Comparison of the new task performance on CUB200.

Figure S2. Comparison of the fisher information and new task performance on CUB200.

domain-specific knowledge focused on the class object.

E. Further Analysis for Transferability
To compare the transferability of our method with state-of-
the-art FSCIL methods, we conducted additional analyses,
considering Fisher information (Figure S2a) and new task
performance (Figure S2b). Fisher information is widely
used in continual learning as a metric to estimate how im-
portant the trained parameters are for the training of a given
task. We assessed transferability through the Fisher infor-
mation of the parameters trained at the base session. If the
parameters trained at the base session have high value of the
Fisher information in the incremental session, it indicates
their importance for the incremental session. Through this,
we evaluated the transferability of our method compared to
other baselines. Additionally, by analyzing new task perfor-
mance, we demonstrate effective incremental session learn-
ing through the transferred knowledge.

As illustrated in Figure S2a, our method, PriViLege,
achieved the highest value of Fisher information com-
pared to other baselines. This observation indicates that
our method can effectively transfer useful domain-specific
knowledge to incremental sessions. We demonstrated that
our method captures transferable knowledge at the base ses-
sion, consistently utilized as valuable knowledge for the in-
cremental sessions. Furthermore, as shown in Figure S2b,
our method also reported the most promising new task per-
formance. Given that new task performance measures the
accuracy of each session under all seen classes, PriViLege
demonstrated remarkable performance despite the few-shot
data given at the incremental sessions. Through this obser-
vation, we also validated that our proposed method, which
captures transferable and useful domain-specific knowl-
edge, exhibits outstanding transferability to facilitate the
learning of incremental sessions.

Figure S3. B-Prompt gradient magnitudes on CUB200. PKT-B-
Prompt, LT-B-Prompt, and FR-B-Prompt denote adopting PKT,
only layer tuning, and fixed ViT for the B-Prompt.

F. Analysis for the Limitation of Prefix Tuning
As mentioned in Section 3.1, prefix tuning has a limitation
in updating B-Prompt due to its slow adaptation speed. To
overcome this limitation, we proposed modulation prompts.
We conducted further analysis to validate that our proposed
modulation prompts can effectively enhance the update of
the B-Prompt. We calculated the norm of gradient vectors
of B-Prompt at every iteration.

As illustrated in Figure S3, relying solely on layer tun-
ing with B-Prompt or leveraging the frozen ViT showed a
small norm of gradient vectors due to the slow adaptation
speed of prefix tuning. This is because the feature vectors
from the B-Prompt tokens are overwhelmed by feature vec-
tors from the input tokens, causing the B-Prompt to strug-
gle to contribute to capturing knowledge and suffer slow
adaptation via prefix tuning. However, utilizing PKT, in-
cluding the modulation prompts, demonstrated a promising
increase in the gradient norm of B-Prompt. Since the modu-
lation prompts can scale the key and value of the B-Prompt,
it promotes the update of the B-Prompt effectively.



(a) Without LED . (b) With LED .

Figure S4. Feature space visualization of [CLS] and vision token
on CUB200. The circle and triangle denote the [CLS] token and
the vision token, respectively. Each color represents the classes.

G. Further Analysis the Effectiveness of LED

As mentioned in Section 3.2, the average pooling of [CLS]
and vision token results in sharing similar feature knowl-
edge between [CLS] and vision token, hindering effective
learning of the vision token. We further analyzed the prob-
lem of average pooling and the effectiveness of entropy-
based divergence loss (LED) in the perspective of feature
vectors from [CLS] and vision token, respectively. As
shown in Figure S4, we visualized the feature space that
includes [CLS] and vision token. Figure S4a showed the
feature space without applying entropy-based divergence
loss, and Figure S4b illustrated the feature space applying
entropy-based divergence loss.

As shown in Figure S4a, [CLS] and vision token are lo-
cated closely in the feature space or even overlap with other
classes. Since [CLS] and vision token share the same objec-
tive for the classification task due to average pooling, they
struggle to capture discriminative knowledge to distinguish
each other. This problem hinders the vision token from cap-
turing effective knowledge and learning discriminative fea-
tures for the classification task.

However, as illustrated in Figure S4b, applying entropy-
based divergence loss can effectively mitigate the problem
of proximity or overlap. It is noteworthy that entropy-based
divergence loss can also help [CLS] feature vector and vi-
sion feature vector become discriminative not only when
they belong to different classes but also when they belong to
the same class. Through this observation, we demonstrated
the problem of average pooling and validated the effective-
ness of the proposed entropy-based divergence loss. Our
entropy-based divergence loss helps mitigate the sharing of
knowledge between [CLS] and vision token and enhances
discriminative ability, even when classifying [CLS] and vi-
sion token that belong to the same class.


