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In this supplement, we provide the implementation de-
tails (Section A) and additional experimental results (Sec-
tion B).

A. Implementation details

In this section, we provide the implementation details of our
work. We implement our ProMetaR (Prompt learning via
Meta Regularization) using Pytorch [6] and Dassl [11, 12],
which is a library designed for domain adaptation and
generalization. Following previous prompt learning meth-
ods [4, 5, 13], we use CLIP-ViT-B/16 as the pretrained
backbone model [7] and four soft prompting tokens for
each modality. Following other works [1, 5, 7], we uti-
lize an ensemble of text prompts for the textual regular-
izer. For the base prompt learning method, we use Indepen-
dent Vision-Language Prompting as a base prompt learning
method that optimizes hierarchical prompts on both image
and text modalities [4]. The learning rate is set to 0.0025,
and the prompts are optimized with SGD optimizer for all
experiments. For the base-to-new generalization settings,
we train the model for 15 epochs. For domain generaliza-
tion and cross-dataset transfer settings, we train the models
for 6 epochs. In all experiments, we evaluate the perfor-
mance of the methods in three independent runs (seed 1, 2,
and 3) and report average performance following previous
prompt learning approaches [4, 5, 13].

Evaluation metrics. In all experiments, we report top-
1 accuracy for each dataset. In base-to-novel generaliza-
tion, the top-1 accuracy is measured on base classes and
new classes, respectively. We calculate the harmonic mean
(H) between the base and new class accuracy to show the
generalization trade-off [9]. In domain generalization, and
cross-dataset evaluation settings, we measure top-1 accu-
racy on the test set of each dataset with the split provided
by CoOp [14] following other prompt optimization works.

*is the corresponding author.

B. Additional experiments

In this section, we provide the results of the additional ex-
periments including cross-dataset settings and more analy-
sis.

B.1. Cross-dataset

We also measure the performance of the proposed method
in the cross-dataset transfer setting to explore the fask gen-
eralization ability of ProMetaR in Table 1. In cross-dataset
transfer setting, we train our ProMetaR on ImageNet [2]
as a source dataset and evaluate it on other 11 unseen
datasets such as Caltech101, OxfordPets, StanfordCars,
Flowers102, Food101, FGVC Aircraft, Sun397, DTD, Eu-
roSAT, and UCF101 following other works. Please note
that the model cannot access the unseen datasets during the
training phase.

For a fair comparison, we exclude UNIGRAM since it
employs a large scale of extra datasets to pre-train the learn-
able prompts. From the table, ProMetaR successfully gen-
eralizes on out-of-domain datasets, achieving the best per-
formance on 7 out of 10 datasets compared to other base-
lines. This result indicates that our ProMetaR improves the
task generalization ability of the existing prompting meth-
ods and robustness against domain shifts.

B.2. More analysis

Comparison of ProMetaR with the generalization meth-
ods. We examine the efficacy of ProMetaR by compar-
ing ours with data augmentation methods: Mixup [10] and
Manifold Mixup [8] and common generalization methods
based on the weight averaging: exponential moving aver-
age (EMA) and stochastic weight averaging (SWA) [3] by
applying them to the base prompt learning method, IVLP.
The results are reported in Table 2. Mixup slightly im-
proves the performance on base classes with an accuracy
gain of 0.39%, but it shows the performance degradation
on the new classes. Similarly, Manifold Mixup decreases
the performance on new classes with the performance gain
on base classes. These results indicate that conventional
data augmentation helps improve the performance on base
classes (traditional generalization), but it still suffers from
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CoOp 71.51 93.70 89.14 64.51 68.71 8530 18.47 64.15 41.92 46.39 66.55
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69
PromptSRC  71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75
ProMetaR ~ 71.29 93.74 90.59 65.83 71.13 86.39 24.78 67.41 47.08 45.02 69.50
Table 1. Performance comparison on the cross-dataset transfer setting.
Methods Base New H
IVLP (Base) 82.51 73.36 77.66
Mixup 82.90 (+0.39) 71.45 (-1.91) 76.75 (-0.91)
Manifold Mixup 83.57 (+1.06) 73.19 (-0.17) 78.04 (+0.38)
EMA 82.30 (-0.21) 74.15 (+0.79) 78.01 (+0.35)
SWA 83.65 (+1.14)  73.14(-0.22)  78.04 (+0.38)
ProMetaR (Ours)  84.39 (+1.88)  76.93 (+3.57)  80.49 (+2.83)

Table 2. Performance comparison of ProMetaR with the domain generalization methods on the base-to-new generalization setting. Results

are averaged over 11 datasets. H refers to harmonic mean.

Methods Base New H

No TaskAug 8427 75.06  79.40
TaskAug: Input Mixup 8426  76.10 79.97
TaskAug: Manifold Mixup (Ours) 8439 7693 80.49

Table 3. Effect of our proposed meta-regularization. Results are averaged over 11 datasets. H refers to harmonic mean.

the task overfitting problem in existing prompt learning
methods to generalize on the new classes (fask generaliza-
tion). EMA enhances new class accuracy by +0.79%, at
little expense of base class accuracy. Meanwhile, SWA
improves performance on base classes with an improve-
ment of +1.14%, but the average accuracy on new classes
slightly decreases. We observe that our ProMetaR signifi-
cantly outperforms both domain augmentation and general-
ization methods by a large margin.

Task augmentation. In Table 3, we measure the perfor-
mance of the model without using task augmentation (No
TaskAug), with the input Mixup [10] for a task augmenta-
tion and our ProMetar that uses Manifold Mixup for the task
augmentation. Compared to No TaskAug, task augmenta-
tion improves the performance on new classes without the
loss of the performance on the base classes. This demon-
strates that using task augmentation alleviates the meta-

overfitting issue by generating various virtual augmented
tasks. In addition, the task augmentation with the manifold
mixup shows better performance than the input mixup with
a performance gain of 0.83% on new classes.
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