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1. Metric definitions
minimum Average Displacement Error (mADE) The
ADE measures the average L2 distance between the pre-
dicted trajectory x̂n

t = (xn
t−th:t+tf

, ynt−th:t+tf
) and its cor-

responding ground truth xnt for n-th agent and t-th time step.
The mADEk represents the minimum ADE over the k most
likely predictions, and is found for all scenes S in the test
set.

ADE =
1

|S|

|S|∑
s=0

1

N

N∑
n=0

1

Ts

Ts∑
t=0

∥xnt − x̂nt ∥2 (1)

mADEk = min
k

(ADE(1), ...,ADE(k)) (2)

minimum Final Displacement Error (mFDE) The FDE
measures the L2 distances between the predicted final point
x̂nTs

= (xn
Ts
, ynTs

) of the prediction and ground truth. The
mFDEk represents the minimum FDE over the k most likely
predictions, and is found for all scenes S in the test set.

FDE =
1

|S|

|S|∑
s=0

1

N

N∑
n=0

∥xnTs
− x̂n

Ts
∥2 (3)

mFDEk = min
k

(FDE(1), ...,FDE(k)) (4)

Miss Rate (MR) MR is the proportion of missed predic-
tions over all predictions. Following the nuScenes dataset,
we defined the prediction whose maximum pointwise L2
distance to ground truth is greater than 2 meters as missed
predictions. MRk take the k most likely predictions and de-
termine whether they are missed predictions or not. If there
are m misses over total n predictions, MR would be m

n .

2. Model details
We employ the same model architecture as our backbone
model, ForecastMAE [2]. Actor-specific tokens, repre-
sented by ᾱ ∈ RC×D, comprise learnable parameters for
each class (C).

ᾱ ∈ RC×D :
{
α(c) ∈ RD

}C
(5)

Each nth actor corresponds to an actor class token αn(c)
within a specific class, where during offline training, all ac-
tors within the same class share the same class token α(c)
regardless of individual instances. During test-time training

and online evaluation, leveraging historical motion patterns
for each actor instance at a specific time (t), we refine the
actor-specific token αt

n(c) to capture distinct actor-specific
motion using Algorithm 1.

In our MAE training approach, we implement random
masking for lane and complementary masking for actors.
Random lane masking involves replacing a segment of lane
embeddings with a learnable lane masking token. Comple-
mentary actor masking entails randomly selecting a subset
of actors, replacing their future trajectory embeddings with
a learnable trajectory masking token. Other actors have
their past trajectory embeddings replaced with the same
learnable trajectory masking token.

3. Training details

As our focus is set on test-time training for trajectory pre-
diction, baseline comparisons are made with existing test-
time adaptation methods.

DUA. Retaining the hyperparameters from the official
implementation, we use pre momentum (ρ0) = 0.1, de-
cay factor (w) = 0.94, and min momentum constant (ζ) =
0.005 for momentum updates.

TENT w/ sup. Employing identical hyperparameters, in-
cluding learning rate and weight decays, we update layers of
BatchNorm1d, BatchNorm2d, BatchNorm3d, SyncBatch-
Norm, and LayerNorm types within the backbone model.

MEK. Adhering to the online learning methodology from
the original paper [7] and importing the MEK optimizer
from MEKF-MAME [1]. In the absence of multi-modal
prediction loss mention, we utilize the WTA loss [3], com-
monly employed for multi-modal trajectory prediction.

AML. Employing the hyperparameters and methodology
from the official implementation for the nuS→ Lyft exper-
iment, adapted to our backbone. We set αinit = 0.0001,
learning rate = 0.001, and sigma epsinit = 0.102. The re-
gression loss of AML is different from ours and MEK.
While ours and MEK use delayed historical and future tra-
jectories (Xt−τ ,Yt−τ ), AML uses current historical trajec-
tory (Xt) for compute regression loss for meta learning. It
has advantage in using current motion, but disadvantage in
not using full historical and future trajectories.



Ours We jointly train regression and reconstruction losses
with equal weightage (set as 1). The reconstruction loss
encompasses history, future, and lane reconstructions with
weights of 1, 1, and 0.35, respectively. We update all types
of layers across all depths.

4. Algorithm of actor-specific token memory
The actor-specific token is implemented as a learnable em-
bedding of a transformer, and stored in a memory dic-
tionary where actor instance ID/corresponding tokens are
key/values; as each token is a 128-dim vector, countless ac-
tors can be stored in memory.

While we know when an actor disappears and reap-
pears during offline training, this is unavailable during on-
line training/inference. How the token memory evolves is
closely related to how an object-tracking network tracks ac-
tor IDs during online training and inference. During on-
line training/inference, actor IDs are tracked by an object-
tracking network. In the case where an actor disap-
pears/reappears and the tracker succeeds in restoring the ac-
tor ID, the ID is used to retrieve the corresponding actor-
specific token from the dictionary. However, when the
tracker fails and assigns a new ID, our method also re-
initializes the token. If an actor appears, an object tracker
has its own strategy for actor-instance initialization. As the
proposed protocol can share the strategy of the tracker, our
method can be integrated into the perception system seam-
lessly.

The comprehensive algorithm delineating the actor-
specific memory is outlined in Algorithm 1. This spe-
cialized memory repository encompasses individual actor-
specific tokens, dynamically evolving as scene-relative time
passes. Upon a scene transition, the actor-specific tokens
are collected by class, averaged, and subsequently passed
on to the succeeding scene.

5. Datasets
We construct four different datasets in the same format us-
ing trajdata [4], a unified framework for trajectory predic-
tion data. Our preprocessing method aligns closely with the
data preprocessing approach of Forecast-MAE [2], with a
couple of modifications from the original methodology.

Primarily, we omit certain information used in the origi-
nal method, such as is intersections and lane attribute, due
to their non-universal availability across all datasets. Ad-
ditionally, our lane parsing method diverges in specifics.
We focus on lane information within a 50-meter radius of
ego-agents, interpolating each lane centerline to standard-
ize point distances within the lane to 1 meter. Furthermore,
individual lanes are divided into segments, each segment
limited to a maximum length of 20 meters.

The parsing of data within a scenario, facilitated by the

Algorithm 1 Actor-Specific Token Memory
Given s = the scene index of a set of scenes S,
n = the nth actor seen in the scene,
c = the class index from a set of C classes,
α = actor specific tokens,
t = scene relative time,
Ts = time length for scene s,
(c) = the class type of actor,
Nc = the number of actors of class c
E = the network Encoder
D = the network Decode, and
τ = the delayed time stamp:

1: ᾱscene(0)(c)← ᾱtrain(c), ∀c ∈ C
2: for s = 0 : |S| do
3: n← 0
4: A← {} ▷ This serves as the memory bank
5: for t = 0 : Ts do
6: for αnew do ▷ ∀ new actor αnew at time t
7: αt

n(c)← ᾱscene(s)(c)
8: A.insert(αt

n(c))
9: n← n+ 1

10: end for
11: if t mod τ ≡ 0 then ▷ Train every τ steps
12: if αt

n(c) ∈ scene(s)t then
13: αt+1

n (c)← αt
n(c)-

∂Et−τ (αn(c),X ,Y,M)

∂αt−τ
n

14: ∀ αt
n(c) ∈ A

15: else
16: αt+1

n (c)← αt
n(c)

17: ∀ αt
n(c) ∈ A

18: end if
19: end if
20: Yt = D(E(Xt,Mt,A)) ▷ Online-Eval
21: end for
22: for c = 0 : |C| do
23: ᾱscene(s+1)(c)← 1

Nc

∑Nc

n αTs
n (c)

24: end for
25: end for

scenario-based parsing protocol of trajdata, hinges on pars-
ing time configuration and absolute scenario length. Our
method utilizes two distinct time configurations for predic-
tion purposes: a 0.9-second past (including the current sec-
ond) and a 3.0-second future interval with a 0.1-second time
interval for short-term prediction. Conversely, for long-
term prediction, we opt for a 2.0-second past (including the
current second) and a 6.0-second future interval with a 0.5-
second time interval. This configuration results in shorter
time intervals yielding longer scenario lengths for short-
term prediction compared to longer time intervals for long-
term prediction. Considering sequential nature of driving
scenario, we use first 10,000 samples for the evaluation.



Tables 1 and 2 display the mean scenario lengths across
datasets for long-term and short-term prediction, respec-
tively. Our update step (τ ) is set as tf , ensuring that the tar-
get data encompasses a scenario length exceeding tf (12 for
long-term and 30 for short-term). Consequently, for long-
term prediction, nuS and Lyft datasets are designated as tar-
get datasets, while for short-term prediction, nuS, Lyft, and
Way datasets serve as the target datasets. Please note that
the real-world application is a continuous setting without
scene transition, so setting the target dataset as a sufficiently
long scenario length is a realistic experiment setting.

Table 1. Mean scenario length of each val dataset in long-term
prediction configurtaion.

Long-term
(2/6/0.5) nuS Lyft Way

scene length 23.0 32.7 2.0

Table 2. Mean scenario length of each val dataset in short-term
prediction configurtaion.

Short-term
(1/3/0.1) nuS Lyft Way INTER

scene length 150.4 200.0 50.5 6.3

6. Further quantitative results
6.1. Additional cross-dataset adaptation results

We conducted exhaustive cross-dataset adaptation experi-
ments for both long-term and short-term predictions, de-
tailed in Tab.1 and Tab.2, respectively. These results no-
tably demonstrate the distinct superiority of our method
over existing Test-Time Adaptation (TTA) and online learn-
ing methodologies.

6.2. More metrics comparison

mADE1 and Missrate results in Tab. 3 show ours is still
effective. Missrate (MR) is widely-used and measures pre-
cision.

Table 3. Comparison with other metrics (lower is better)

(mADE1/Missrate) Source only TENT MEK Ours
INTER → nuS (1/3/0.1) 3.030 / 0.338 1.726 / 0.336 1.461 / 0.291 1.239/ 0.154

nuS → Lyft (2/6/0.5) 2.546 / 0.362 2.473 / 0.346 2.412 / 0.323 1.918 / 0.227

6.3. More ablation of actor-specific token on other
datasets

We included only two datasets due to page limits; experi-
ments on other datasets (Lyft, Way) in Tab. 4 still show that
our method is effective.

Table 4. Effect of actor-specific memory on additional datasets

Exp (mADE6/mFDE6) Baseline Ours w/o A-s Ours
Lyft → nuS (1/3/0.1) 0.506 / 1.102 0.420 / 0.934 0.357 / 0.770
Way → Lyft (2/6/0.5) 0.638 / 1.404 0.594 / 1.311 0.549 / 1.171

6.4. Efficiency under long-term configuration

In Fig. 1, we present another efficiency comparison exper-
iment between our method and baseline approaches in the
long-term configuration. Demonstrating superiority in both
accuracy and efficiency, our method outperforms the base-
line methods in this setting. All methods achieve real-time
execution, surpassing the 2FPS benchmark set by the 0.5
time interval of data acquisition. However, in the long-term
configuration with an adaptation step of 5, MEK shows a
17.7 improvement in computational efficiency but experi-
ences a significant decline in accuracy. TENT’s efficiency
remains nearly consistent with the short-term configuration,
but its accuracy doesn’t exhibit significant improvement
from joint training, making it noteworthy in this context.

2 1 0 1 5 2 0 2 5

0 . 8

0 . 9

1 . 0

1 . 1

1
2

5 1 0 2 0

mA
DE

 (lo
we

r is
 be

tter
)

F P S

 O u r s  w i t h  U p d a t e  F r e q .R e a l t i m e
J o i n t  T r a i n i n g

M E K
T E N T

Figure 1. mADE6 and FPS of our method and the baselines in nuS
→ Lyft long-term experiment (2/6/0.5).

7. Expanded visual results

7.1. Comparative analysis with baseline methods

Figure. 2 showcases additional qualitative comparison re-
sults between our method and the baseline methods. No-
tably, TENT w/ sup exhibits minimal adaptation in compari-
son to the other methodologies. Regarding MEK, the super-
vision signal tends to lead to underfitting or over-adaptation,
primarily adjusting the last layer weights of the decoder
without inducing the model to acquire robust representa-
tions. Conversely, our method demonstrates stable adapt-
ability, particularly excelling in challenging scenarios.



7.2. Reconstruction results

In Fig. 3, additional reconstruction results are showcased.
These reconstruction examples are trained offline using the
source dataset and subsequently adapted during test time us-
ing the target dataset via reconstruction loss. Upon exami-
nation of the three reconstruction instances, it’s evident that
the method appropriately learns lane structures, emphasiz-
ing an understanding of interactions among lane segments
and actor trajectories. Furthermore, in the second column,
the proper reconstruction of future trajectories for actors is
observed, showcasing an understanding of both lane struc-
ture and the motion of following/leading actors.

7.3. Extended multi-modal prediction findings

Considering importance of multi-modal prediction [5, 6],
figure. 4 presents additional multi-modal prediction results
obtained through our adaptation method. In the first and
second columns, our approach generates diverse and plau-
sible prediction samples while comprehending road struc-
tures adeptly. Notably, it showcases an understanding of
complex road structures, such as turn scenarios. Moving to
the third column, our method also demonstrates an under-
standing of interactions with surrounding actors. It illus-
trates instances where our model generates trajectories that
avoid collisions by either surpassing nearby actors or tran-
sitioning to another lane. In contrast, the non-updated ver-
sion produces trajectories that could lead to collisions with
the front right actor.
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Figure 2. Additional visual comparison of adaptation results of our method against the baselines. For each image pair, the above shows
prediction results before adaptation, and the below shows prediction results after adaptation via ours (blue arrow), TENT w/ sup (orange
arrow), and MEK (green arrow). Red arrows denote GT future trajectories. Sky blue and orange boxes refer to surrounding actors and
actors to be predicted. We depicted only one actor result and one mode among multi-modal predictions closest to the GT for visual
simplicity. Please note that our method is multi-modal prediction for all actors method.
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Figure 3. The first row indicates masked samples, and the row below shows the reconstructed outputs. The blue/red arrows indicate
historical/future trajectories. The black arrows refer to the masked trajectories. The white lines are the lane centerlines, and the gray
dashed lines are the masked lane centerlines.
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Figure 4. Multi modal prediction results (blue arrow) before and after adaptation via our method. Ours generates elaborate samples that
consider interaction between lane or other actor due to representation learning, which cannot be learned from the GT (red arrow) using
regression loss.
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