
Test-Time Adaptation for Depth Completion

Supplementary Material

Summary of contents
• In Section A, we present the GPU time of each adaptation

method to show the effectiveness of our method.
• In Section B, we present the preliminary observations with

image and range inputs of varying sparsity.
• In Section C, we describe the datasets used.
• In Section D, we present the hyperparameter settings for

result reproduction and we elucidate evaluation details.
• In Section E, we provide a study on the learned proxy

embedding with a visualization.
• In Section F, we present an ablation study of the loss

components in our method.
• In Section G, we present the results on KITTI → VKITTI

adaptation.
• In Section H, we present the results on a different source

dataset (Waymo → VKITTI).
• In Section I, we show a qualitavive result of the prelimi-

nary observation.

A. Adaptation speed

We compare the GPU time of our adaptation method with
the baselines (BN Adapt, CoTTA) on VKITTI in Table 1.

Compared to CoTTA, our adaptation method does not
require multiple inferences to get the pseudo-prediction (de-
rived from averaging teacher model predictions with differ-
ent RGB augmentations) used to adapt the student model.
Yet, our method requires an additional computation for the
proxy embedding. Thus, the proxy layer’s size relative to the
model size causes the adaptation time difference. For exam-
ple, CoTTA reduced the total time by 38.9% over ProxyTTA-
fast on MSGCHN, which is a light-weight depth completion
model. In this case, the proxy layer is relatively larger than
in other models, where multiple inferences require less com-
putation than the proxy layer. As a result, the total time is
increased in MSGCHN. However, for large models (NLSPN,
CostDCNet), ProxyTTA reduced total time by 56.6% over
CoTTA; our proxy layer size is relatively smaller than the
large models, while still improving performance by 26.52%.
Compared to BN Adapt, our method requires additional pa-
rameters for the adaptation layer and the proxy layer. Hence,
our method is 38.18% slower in adaptation time, 19.36%
slower in evaluation time, and 33.16% in total. Yet, our
method improves errors by 15.67% over BN Adapt.

B. Further observations on image/range inputs

We present additional preliminary observations of the image
and range sensor inputs with varying sparsity. Since pre-

Model Method Adaptation time Evaluation time Total time

MSGCHN CoTTA 88.9 (-38.9%) 8.66 (-1.0%) 81.2 (-41.3%)
ProxyTTA-fast 136.6 8.8 145.4

NLSPN
CoTTA 717.5 (+67.4%) 75.3 (-10.9%) 792.8 (+60.0%)

BN Adapt 185.0 (-20.8%) 82.8 (-0.8%) 267.8 (-15.6%)
ProxyTTA-fast 168.2 (-28.0%) 83.4 (-0.1%) 251.6 (-20.66%)

ProxyTTA 233.6 83.5 317.1

CostDCNet
CoTTA 329.1 (+78.2%) 33.6 (-51.0%) 369.1 (+43.2%)

BN Adapt 82.1 (-55.5%) 42.5 (-37.9%) 125.6 (-50.8%)
ProxyTTA-fast 141.9 (-23.2%) 68.7 (+0.3%) 210.6 (-16.8%)

ProxyTTA 184.7 68.5 253.2

Table 1. GPU time for various methods and models, tested on
Virtual KITTI. Time is in milliseconds (ms). ‘Adaptation time’
denotes the time required to adapt (or train) each method for a
single test data point. ‘Evaluation time’ denotes the time taken to
test each method for a test data instance.‘Total time’ is the sum of
the Adaptation and Evaluation times.

vious works [2, 10] state that the depth completion model
propagates the sparse depth to the dense depth guided by
image features, one can raise a question on our preliminary
results in the main paper without the lidar input, such as
there’s no sparse point to propagate to the near pixels. We
clarify that the results are intended to highlight the domain
distrepancy. Therefore, we show additional results with 1%,
5%, and 10% of sparse points in the range input on indoor
datasets, as shown in Table 2. As we increase the range
points, the performance is improved yet still worse than the
sparse-depth-only results in Tab. 8.

C. Datasets

KITTI [6] is composed of calibrated RGB images with
synchronized point clouds from Velodyne lidar, inertial, and
GPS information, and from more than 61 driving scenes.
There are ≈80K raw image frames and associated sparse
depth maps, both with ≈5% density, available for depth
completion [13]. Semi-dense depth is available for the lower
30% of the image space, and 11 neighboring raw lidar scans
comprise the ground-truth depth. We did not use a test or
validation set, and the training set contains ≈86K single
images.

VOID [14] contains synchronized 640×480 RGB images
and sparse depth maps from indoor scenes of laboratories
and classrooms and from outdoor scenes of gardens. Sparse
depth maps (of ≈0.5% density and containing ≈1,500 sparse
dense points) are obtained by the VIO system XIVO [4], and
dense ground-truth depth maps are obtained by active stereo.
VOID uses rolling shutter to capture challenging 6 DoF
motion for 56 sequences - as opposed to KITTI’s typically



Method MSG-CHN NLSPN CostDCNet MSG-CHN NLSPN CostDCNet

Dataset VOID→NYUv2 VOID→ScanNet

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Image + sparse depth (1%) 1643.34 2177.71 602.17 858.19 809.36 1144.91 1597.41 2240.43 490.13 738.77 665.57 982.32

Image + sparse depth (5%) 996.54 1599.14 379.45 638.55 427.69 736.23 809.38 1455.69 240.55 441.70 337.39 620.53

Image + sparse depth (10%) 785.65 1376.93 327.41 591.99 339.31 622.75 581.93 1165.63 191.75 379.10 264.66 516.74

Sparse depth only 734.13 1046.28 237.47 402.47 147.76 354.57 211.86 444.62 162.29 276.29 88.25 205.46

Table 2. Model sensitivity to input modalities with varying sparsity.

planar motion. We use a training set of ≈46K images to
prepare the model.

NYUv2 [11] contains 372K synchronized 640×480 RGB
images and depth maps (via Microsoft Kinect) from 464
indoor scenes of household, office, and commercial types.
To generate sparse depth maps in the style of SLAM/VIO,
we used the Harris corner detector [8] to sample ≈1,500
points from the depth maps. We use a set of 654 test set
images for adaptation.

ScanNet [3] contains 2.5 million images and dense depth
maps for 1,513 indoor scenes. To generate sparse depth
maps in the style of SLAM/VIO, we used the Harris corner
detector [8] to sample ≈1,500 points from the depth maps.
We use a set of ≈21K test images for adaptation.

Virtual KITTI (VKITTI) [5] contains ≈17K 1242×375
images from 35 synthetic videos created by applying 7 vari-
ations in weather, lighting, or camera angle to each of 5
cloned KITTI [13] videos. There exists a large domain
gap between RGB images from VKITTI and KITTI, even
though the virtual worlds created in Unity by [5] are similar
to KITTI scenes. Thus, we only use the dense depth maps of
VKITTI to avoid the domain gap in photometric varations.
The sparse depth maps are obtained by simulating KITTI’s
lidar-generated sparse depth measurements such that the
marginal distribution of VKITTI’s sparse points mimics that
of KITTI’s. We use a set of ≈2,300 test images for the
adaptation.

nuScenes [1] consists of 1600×900 calibrated RGB im-
ages and synchronized sparse point clouds, 27.4K images
from 1000 outdoor driving scenes for training, and 5.8K im-
ages from 150 scenes for testing. We set up the ground truth
for the test images by merging projected sparse depth from
forward-backward frames. The setup code will be released
to clarify further details and reproducibility.

SceneNet [9] contains 5 million 320×240 RGB images
and depth maps from indoor trajectories of randomly ar-
ranged rooms. We use a single split (out of 17 available)
containing 1000 subsequences of 300 images each, gener-
ated by recording the same scene over a trajectory. Because
there are no sparse depth maps provided, we sampled from
the depth map via Harris corner detector [8] to mimic the

Dataset Learning Rate wsm wz wproxy Inner Iter.

MSG-CHN
VKITTI 2e-3 1.0 1.0 0.2 1

VKITTI-FOG 5e-3 3.0 1.0 0.1 1
nuScenes 3e-3 9.0 1.0 0.2 1
SceneNet 2e-3 8.0 1.0 0.1 3
NYUv2 2e-4 0.8 1.0 0.4 3
ScanNet 5e-3 8.0 1.0 0.3 3

NLSPN
VKITTI 2e-3 0.8 1.0 0.4 1

VKITTI-FOG 1e-3 1.0 1.0 0.2 1
nuScenes 1e-3 1.0 1.0 0.1 1
SceneNet 2e-3 0.7 1.0 2.0 3
NYUv2 4e-3 5.0 1.0 1.0 3
ScanNet 1e-4 2.0 1.0 0.3 3

CostDCNet
VKITTI 4e-3 4.5 1.0 0.1 1

VKITTI-FOG 5e-3 3.0 1.0 0.04 1
nuScenes 5e-3 3.0 1.0 0.1 1
SceneNet 7e-3 2.0 1.0 0.2 3
NYUv2 6e-3 4.0 1.0 0.1 3
ScanNet 3e-3 1.0 1.0 0.2 3

Table 3. Hyperparameters. For MSG-CHN, NLSPN, and CostDC-
Net methods for initialization, preparation, and adaptation.

sparse depth produced by SLAM/VIO. The final 375 corners
are obtained by using k-means to subsample the resulting
points, representing 0.49% of the total pixels. We use a set
of ≈2,300 test images for adaptation.

Waymo Open Dataset [12] contains 1920×1280 RGB
images and lidar scans from autonomous vehicles. The
training set contains ≈158K images from 798 scenes and
the validation set ≈40K images from 202 scenes, collected
at 10Hz. Objects are annotated across the full 360◦ field.
We obtain our validation set by sampling from the whole
validation dataset every 0.6 seconds. Range sensor inputs are
obtained by projecting the top lidar’s point cloud scan to the
camera frame. We obtained the ground truth by projecting
10 forward and backward frames from front lidar and top
lidar to the image frame, which approximately counts for



1 second of capture. To assume that the reprojected scenes
are static, we removed the moving objects in the scenes
using object annotations. Also, outlier removal is utilized
for filtering out errorenous depth points.

D. Implementation details
Hyperparameter. We specifically note the hyperparameters
of three methods for initialization, preparation, and adapta-
tion on Table 3.
Epochs and training details Adaptation occurs in a single
epoch, with ‘the number of iterations per data point’ (inner-
iter) specified in Tab. 3. During initialization and preparation
stages, the adaptation and proxy layers are trained for 6
epochs. Batch sizes for all methods are: 48 for preparation
stage, 16 for initialization and adaptation stages, with the
exception of ScanNet [6], using a batch size of 36. To
prevent collapse during preparation stage, we follow the
protocol of [7]; we exploit the projection / prediction layers
and divide online / target branch, and update target projection
layer with exponential moving average of online branch. We
used embedding dimension and hidden dimension of 512
for MSGCHN, and 1024 for CostDCNet and NLSPN. The
learning rates for initialization and preparation stage will be
released with the code release.
Evaluation. We evaluate our adaptation models on bottom-
cropped regions in the outdoor dataset, where the sparse
depth exists. For outdoor dataset, models are evaluated on
the bottom cropped region of the test split, 1242× 240 for
Virtual KITTI, and 1600 × 544 for nuScenes. For indoor
dataset, we evaluated the models on the entire region. The
definition of the error metrics in evaluation are described in
Table 5. We evaluate our model on depth range from 0.0 to
80.0 meters for the ourdoor, and 0.2 to 5.0 meters for the
indooor.

E. Discussion on learned proxy embeddings
Here, we provide the t-SNE visualization of image & sparse
depth and proxy embedding from source and target.

Fig. 1 shows the embeddings visualized by t-SNE, where
the target domain proxy embeddings’ centroid is closer to
that of source’s proxy and image & sparse depth embed-
dings, than to the centroid of target’s image & sparse depth
embeddings, highlighting effectiveness of proxy embedding
for adaptation.

F. Ablation study
Here, we ablate the effect of each loss term denoted with
the checkmarks in Table 4. Using sparse depth consistency
loss ℓz (Eqn. 4) alone can improve the pretrained model as
it learns the shapes of the test domain. However, because
of the sparsity, the supervision signal is weak, leading the
model to exhibit artifacts and distortions in the depth map.

Figure 1. t-SNE plot of learned embeddings on VOID and NYUv2.

Including a local smoothness loss ℓsm (Eqn. 5) mitigates this
by propagating depth to nearby regions. However, without
knowledge of 3D shapes compatible with the sparse points,
the wrong predictions are sometimes propagated as in the
left bounding box region from Row 1, Column 4 of Fig. 4.
The best-performing method employs the proposed proxy
embeddings as a regularizer to guide the adaptation layer
update. As the proxy mapping produces test-time features
that follow the distribution of the source domain, minimizing
our proxy consistency loss (Eqn. 6) implicitly aligns the test
domain features to those of the source domain that are com-
patible with the 3D scene observed by the test-time sparse
point cloud. Not only does this improve overall performance,
but it also reduces standard deviation in error, which can
be interpreted as an increase in the stability of the adapta-
tion. We show qualitative comparisons against BN Adapt
in Fig. 4, where boxes highlight improvements by fixing
erroneous propagation by local smoothness (e.g., bleeding
effect, which is not mitigated by using image gradients as
guidance in Eqn. 5). Quantitatively, we improve over the
baseline by an average of 21.09% across all methods and
datasets, demonstrating the efficacy of our proxy embedding.

G. KITTI → VKITTI results
Here, we present additional results on KITTI → VKITTI
adaptation. Test-time adaptation results are shown in Table 6.
Consistent with the trends observed in the main paper, our
method outperforms over both BN Adapt and CoTTA, with
a 21.82% improvement compared to BN Adapt and 12.6%
improvement over CoTTA.

H. Experiment with different source dataset
In our main paper, the only source dataset for outdoor adap-
tation scenario was KITTI which is the most popular outdoor
depth completion dataset. To validate our method’s appli-
cability to models trained on diverse source datasets, we
include additional results from adaptation scenarios using
a model trained on the Waymo dataset, as shown in Table
7. Our method shows an improvement over CoTTA and BN
Adapt by 21.70%.



KITTI → Waymo KITTI → VKITTI-FOG KITTI → nuScenes

Method ℓz ℓsm ℓproxy MAE RMSE MAE RMSE MAE RMSE

MSG-CHN
✓ 951.25±3.14 3512.07±6.40 978.84±3.36 3561.40±15.48 3164.46±11.32 6453.54±17.31
✓ ✓ 613.01±1.99 1935.43±9.14 732.61±6.02 3113.11±21.78 2865.15±9.96 6144.48±24.14
✓ ✓ ✓ 608.91±1.74 1921.83±2.54 728.24±3.73 3087.36±15.92 2834.08±17.64 6096.56±21.08

NLSPN
✓ 837.66± 8.73 3668.94± 25.90 715.86±26.36 3034.21± 57.65 5076.83±53.85 9710.88± 89.76
✓ ✓ 489.46±5.45 1613.66±30.04 705.14±16.86 3059.64±97.85 2783.61±159.62 6313.4±276.09
✓ ✓ ✓ 477.28±3.32 1598.64±18.95 686.91±22.14 2666.70±56.64 2589.25±59.03 6006.18±90.66

CostDCNet
✓ 816.33±32.01 3431.96±55.34 807.62±69.12 3254.83±179.90 3135.11±81.76 7596.49±159.16
✓ ✓ 469.52±2.54 1594.38±6.10 516.93±1.62 2751.21±17.42 2067.42±10.23 5487.85±37.21
✓ ✓ ✓ 466.44±1.63 1580.38±11.48 512.72±0.74 2735.01±3.53 2062.28±11.24 5509.96±23.41

VOID → NYUv2 VOID → SceneNet VOID → ScanNet

MSG-CHN
✓ 971.64±66.86 1291.45±45.67 242.11±4.24 491.48±10.49 462.95±34.84 659.9±37.93
✓ ✓ 1005.49±25.97 1329.76±25.01 194.60±3.64 425.16±10.58 330.20±48.46 503.73±57.14
✓ ✓ ✓ 699.60±6.00 1120.37±9.76 192.74±1.72 424.49±4.58 302.21±4.10 480.08±8.03

NLSPN
✓ 145.72 ±6.55 271.78± 9.91 130.49±13.64 337.14±28.38 112.38±1.72 234.60±3.46
✓ ✓ 128.17±4.13 240.97±3.86 118.65±2.24 337.63±2.58 77.84±0.28 169.81±0.50
✓ ✓ ✓ 124.41±2.27 240.73±5.72 113.93±1.49 333.41±4.32 74.77±0.31 166.61±0.45

CostDCNet
✓ 152.43±13.07 432.20±54.51 213.4±19.52 597.22±49.78 91.13±1.40 286.17±9.07
✓ ✓ 101.31±1.67 217.77±6.00 134.51±4.23 360.33±9.67 69.02±0.51 164.90±2.38
✓ ✓ ✓ 95.87±2.16 203.83±4.72 125.75±1.93 357.12±4.13 68.17±0.44 162.35±1.12

Table 4. Ablation study of each loss term. Note that NLSPN and CostDCNet update the adaptation layer and batch normalization layers, yet
MSGCHN only updates the adaptation layer.

Metric Definition

MAE 1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|

RMSE
(

1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|2

)1/2
Table 5. Error metrics. dgt denotes the ground-truth depth.

KITTI → VKITTI

Method MAE RMSE

MSG-CHN

Pretrained 2433.46 6675.16
CoTTA 839.19±12.78 3625.38±39.35
ProxyTTA-fast (Ours) 800.88±1.86 3268.26±4.12

NLSPN

Pretrained 1469.19 8060.97
BN Adapt 1016.87±8.84 3453.00±3.21
BN Adapt, ℓz , ℓsm 855.12±14.56 3516.85±58.63
CoTTA 775.09±3.63 3585.37±13.31
ProxyTTA-fast 849.43±3.61 3540.44±3.57
ProxyTTA (Ours) 639.19±5.68 2934.36±33.80

CostDCNet

Pretrained 845.35 3774.01
BN Adapt 1248.35±0.25 4267.64±0.62
BN Adapt, ℓz , ℓsm 1016.87±8.84 3453.00±3.21
CoTTA 698.42±9.93 3324.59±30.21
ProxyTTA-fast 822.49±13.55 3331.24±55.30
ProxyTTA (Ours) 639.91±8.92 2951.21±30.93

Table 6. Additional results for test-time adaptation for depth com-
pletion on KITTI → VKITTI.

A noteworthy observation from the Waymo adaptation
results, when compared to the KITTI → VKITTI-fog results
from the main paper, is that the adaptation result of KITTI
outperforms that of Waymo. This difference is caused by

Waymo → VKITTI-FOG

Method MAE RMSE

MSG-CHN
Pretrained 1473.14 4676.19
CoTTA 1348.02±38.03 4016.67±28.16
ProxyTTA-fast (Ours) 1052.78±5.74 3891.05±17.34

NLSPN

Pretrained 2734.27 37621.10
BN Adapt, ℓz , ℓsm 1205.96±40.14 3857.88±101.15
CoTTA 2485.66±18.05 6307.96±48.64
ProxyTTA (Ours) 808.16±7.86 3536.58±91.15

CostDCNet

Pretrained 1261.00 4360.37
BN Adapt, ℓz , ℓsm 742.99±2.17 3403.00±3.62
CoTTA 1150.16±5.69 4134.16±9.15
ProxyTTA (Ours) 724.77±5.18 3349.21±29.00

Table 7. Additional results for test-time adaptation for depth com-
pletion on Waymo → VKITTI-FOG.

from the domain discrepancies between KITTI and VKITTI-
fog datasets versus the domain gap between Waymo and
VKITTI-fog. For example, VKITTI’s object appearances
and resolution (1226×370 for KITTI, and 1242×375 for
VKITTI) are more akin to those in the KITTI dataset.
Conversely, the Waymo dataset features higher resolution
(1920×1280) and different object shapes compared to KITTI
and VKITTI. Hence, the adaptation result is influenced by
the extent of domain discrepancy between the source and
target datasets.



Method MSG-CHN NLSPN CostDCNet MSG-CHN NLSPN CostDCNet

Dataset VOID→NYUv2 VOID→ScanNet

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Image only 2072.78 2462.63 969.14 1228.44 1359.16 1619.40 2001.90 2451.681 899.41 1151.12 1216.17 1459.46

Sparse depth only 734.13 1046.28 237.47 402.47 147.76 354.57 211.86 444.62 162.29 276.29 88.25 205.46

Image + sparse depth 1040.93 1528.98 387.36 704.66 189.10 446.71 316.646 698.633 232.332 431.199 144.311 458.692

Dataset KITTI→Waymo KITTI→nuScenes

Image only 12766.791 18324.83 18829.96 24495.73 13598.50 18376.15 11823.061 17244.44 15835.04 22613.78 12794.65 16744.15

Sparse depth only 861.13 2706.75 1290.28 3571.26 1210.93 3102.49 3943.97 7306.33 2540.58 6203.66 2996.28 6773.06

Image + sparse depth 1103.33 2969.39 1173.26 3092.02 1084.18 2819.42 3331.82 6449.09 2656.61 6146.59 3064.72 6630.65

Table 8. Model sensitivity to input modalities. Depth completion networks have a high reliance on sparse depth modality. Performing
inference in a novel domain without the RGB image, i.e., using just sparse depth as input, can improve over using both data modalities.

I. Quantitative preliminary results
To provide a precise observation, we provide the quantitative
results of model sensitive study in Tab. 8.



References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 2

[2] Xinjing Cheng, Peng Wang, Chenye Guan, and Ruigang Yang.
Cspn++: Learning context and resource aware convolutional
spatial propagation networks for depth completion. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 10615–10622, 2020. 1

[3] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 2

[4] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-supervised
visual depth prediction. IEEE Robotics and Automation Let-
ters, 4(2):1661–1668, 2019. 1

[5] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig.
Virtual worlds as proxy for multi-object tracking analysis. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4340–4349, 2016. 2

[6] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32:1231 – 1237, 2013.
1

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doer-
sch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 3

[8] Christopher G. Harris and M. J. Stephens. A combined corner
and edge detector. In Alvey Vision Conference, 1988. 2

[9] John McCormac, Ankur Handa, Stefan Leutenegger, and An-
drew J Davison. Scenenet rgb-d: 5m photorealistic images of
synthetic indoor trajectories with ground truth. arXiv preprint
arXiv:1612.05079, 2016. 2

[10] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In
So Kweon. Non-local spatial propagation network for depth
completion. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XIII 16, pages 120–136. Springer, 2020. 1

[11] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from rgbd
images. In European Conference on Computer Vision, 2012.
2

[12] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2446–2454, 2020. 2

[13] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.

In 2017 international conference on 3D Vision (3DV), pages
11–20. IEEE, 2017. 1, 2

[14] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano Soatto.
Unsupervised depth completion from visual inertial odome-
try. IEEE Robotics and Automation Letters, 5(2):1899–1906,
2020. 1


