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Supplementary Material

A. Implementation Details
Table 3 shows the comparison between ECLIPSE, Karlo,
and Kaninsky priors. Notably, ECLIPSE prior uses very
compressed architecture across the possible avenues (i.e.,
number of layers, number of attention heads, attention
head dimension, etc.). Karlo uses CLIP-Vit-L/14 with
768 projection dimensions. While Kandinsky v2.2 uses
the ViT-bigG-14-laion2B-39B-b160k with 1280 projection
dimensions. Overall, the total number of parameters in
ECLIPSE priors is about 33 million compared to 1 bil-
lion parameters of Karlo/Kandinsky priors. Additionally,
Projection and Diffusion-Baseline use the same architec-
ture as ECLIPSE prior for better comparisons. Except the
Diffusion-Prior contains the additional time embeddings for
diffusion modeling.

ECLIPSE Karlo / Kandinsky
Priors

Num Attention Heads 16 32
Attention Head Dim 32 64
Num Layers 10 20
Embedding Dim 768/1280 768/1280
Additional Embeddings 3 4
Dropout 0.0 0.0
Time Embed No Yes

Total Parameters 33/34 M 1 B

Table 3. Prior model architecture hyperparameter details.

B. Training and Inference Efficiency
In this section, we assess the efficiency of various text-to-
image (T2I) prior models, examining their resource utiliza-
tion during training and inference. This includes an anal-
ysis of GPU hours, data requirements, and model param-
eters. A comparative analysis, as shown in Table 4, high-
lights the efficiency of diverse T2I priors, including stable
diffusion. However, specific training details for several T2I
priors like LAION, Kandinsky, and Karlo remain undis-
closed, prompting us to draw comparisons with domain-
specific priors known for their relatively streamlined train-
ing processes. These comparisons reveal that even special-
ized domain priors necessitate substantial resources, entail-
ing millions of parameters and extensive GPU processing
time. Contrarily, ECLIPSE emerges as an efficient model,
requiring merely 50 GPU hours to achieve state-of-the-art
(SOTA) results. Moreover, Figure 7 compares the infer-
ence times of traditional diffusion priors against ECLIPSE.

Table 4. Training time comparisons of various prior models in
terms of resource requirements after [1].

Methods Compute Parameters Data Size
A100 GPU Hours (↓) Millions (↓) Millions (↓)

Stable Diffusion 150000 859.92 2000
Isolated Prior 1344 249.22 20
Vector Prior 1680 101.76 26
Texture Prior 576 249.22 10
Color Prior 3072 249.98 61
LAION Prior (T2I) N/A 1000 2000
Karlo Prior (T2I) N/A 1000 115
Kandinsky Prior (T2I) N/A 1000 117
ECLIPSE 50 33∼34 < 10
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Figure 7. Inference time analysis of diffusion priors having 1B and
33M parameters vs. ECLIPSE prior.

Whereas conventional models demand approximately 0.8
seconds for inference, ECLIPSE significantly reduces this
to just 0.005 seconds, attributing to its lesser parameters
and single-step estimations. This efficiency underscores a
pivotal insight: the process of text-to-image mapping does
not necessitate the use of expansive models like Stable Dif-
fusion. Instead, we demonstrate that T2I conversion can be
executed more proficiently within the latent space, mark-
ing a significant stride towards enhancing model efficiency
without compromising performance.

C. Hyper-parameter Analysis
ECLIPSE only contains one important hyperparameter (λ)
that controls the contrastive learning. As discussed in Sec-
tion 3.3, a higher value of λ can make the prior model
learn the different distributions that are highly aligned with
text distributions. A lower value of λ may not benefit in
terms of generalization to unseen prompts. Hence, we con-
ducted a small study on the MSCOCO dataset. We train
the ECLIPSE priors for Karlo decoder on 20,000 iterations
with the OneCycle learning rate. Figure 8 illustrates the



Table 5. This table illustrates the scaling behavior of various T2I
prior learning strategies. “Small” priors are 33 million in terms
of parameters. And “Large” priors have 89 million parameters.
All prior models are trained on the CC12M dataset with the Karlo
diffusion image decoder.

Methods ZS T2I-CompBench
FID Color (↑) Shape (↑) Texture (↑) Spatial (↑)

33M Priors
Projection 28.84 0.4659 0.4632 0.4995 0.1318
Diffusion-Baseline 26.13 0.5390 0.4919 0.5276 0.1426
ECLIPSE 26.98 0.5660 0.5234 0.5941 0.1625
89M Priors
Projection 28.81 0.4579 0.4625 0.4761 0.1343
Diffusion-Baseline 29.78 0.4988 0.4790 0.4604 0.1247
ECLIPSE 25.77 0.5712 0.5358 0.6194 0.16665
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Figure 8. Hyperparameter (λ) ablation. This figure illustrates the
PickScore preferences across the ECLIPSE priors trained with dif-
ferent values of λ w.r.t. the Projection baseline (with λ = 0.0).
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“A man with a red helmet on a small moped on a dirt road.”

Figure 9. Qualitative example for ECLIPSE priors (with Karlo
decoder) trained with different values of hyperparameter (λ).

pickscore preferences on T2I-CompBench of various val-
ues of λ. It can be observed that higher values of λ lead to
the same performance as the baseline. While lower values
of λ outperform the baseline by significant margins. Ad-
ditionally, Figure 9 shows one qualitative example across
the range of λ. It can be seen that the generated image
quality drops as λ increases. Hence, the optimal range
is: λ ∈ [0.2, 0.4].

D. ECLIPSE Prior Model Scaling Behaviour
To analyze the scaling behavior of different prior learn-
ing strategies to a certain extent, we increase the prior
model size from 33M to 89M. Table 5 shows the results
when small and large priors are trained on the same dataset
(CC12M) with the Karlo image diffusion decoder. We
train both versions of the prior models on 60,000 iterations
(about 350 GPU hours) with exactly the same hyperparam-
eters. First, we observe that ECLIPSE prior improves the
performance slightly. Second, the Projection baseline gets

the same performance, which suggests that data is the bot-
tleneck for the Projection prior. Third, interestingly Dif-
fusion prior degrades the performance. Upon further in-
spection, we found that 60,000 iterations are insufficient for
the Diffusion model to converge. Therefore, this verifies
that Diffusion-priors are resource-hungry. Importantly,
ECLIPSE priors easily converge irrespective of the data and
number of parameters; suggesting that ECLIPSE do not de-
pend upon the huge resource constraints.

E. Aesthetics: Kandinsky v2.2 vs. ECLIPSE
As was observed in Figure 4 from the main paper, the
Kandinsky v2.2 model outperforms the ECLIPSE prior
when evaluated in terms of human preferences measured
by Pickscore. We attribute this behavior to the differences
in the aesthetic quality of the generated images. There-
fore, we conduct additional actual human studies to analyze
this behavior further. In total, we randomly selected 200
prompts from the MSCOCO validation set (instead of T2I-
CompBench as reported in Figure 4) and asked the human
evaluators to perform two studies:
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Figure 10. Human evaluations of the ECLIPSE vs.Kandinsky v2.2
generated images. It can be observed that both models are rated
equally in terms of image quality and caption alignment.
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Percentage (%)

Win: 28.10% Tie: 41.74% Lose: 30.17%

Figure 11. This figure illustrates the human preferences between
ECLIPSE prior for Kandinsky model (trained on LAION-HighRes
subset) vs. Original Kandinsky v2.2 model.

• Rate each image in terms of quality and caption alignment
between 1-5. Where 1 is the artificial-looking image and
caption alignment is poor. While 5 represents a very high-
quality image and is perfectly aligned with the captions.



“a couple of 
elephants drink 

water at a 
watering hole”

“A man that is 
next to a child 
with bread.”

“A stuffed animal 
has been placed 

inside of 
blankets.”

Kandinsky ECLIPSE

Figure 12. Qualitative examples comparing (in terms of aesthetics)
ECLIPSE with Kandinsky v2.2.

• Image preferences in terms of aesthetics. We show im-
ages from both models and ask the evaluators to choose
one which looks more aesthetically pleasing.
Interestingly, as shown in Figure 10, both models are

rated equally when evaluated independently. Addition-
ally, according to Figure 11, Kandinsky v2.2 is preferred
slightly more than the ECLIPSE in terms of aesthetic qual-
ity. This finding suggests that smaller prior trained with
ECLIPSE can perform equally (if not better) to those big
prior models. Figure 12 shares three examples from the
MSCOCO. Both models perform equally well but Kandin-
sky is more aesthetically pleasing. Figure 21 and 22 show
the MTurk human evaluation instructions.

F. Diversity With Non-Diffusion Priors
One important aspect of the diffusion models is the di-
versity of the generated images. Therefore, diversity and
caption alignment go hand-in-hand. We further analyze
whether having the non-diffusion prior hurts diversity or
not. We perform additional qualitative evaluations and
given a prompt – we ask the human evaluators to select
which of the two grids of six images are more diverse. This
experiment is performed between ECLIPSE and Kandin-
sky v2.2. As shown in Figure 13, even if we use the non-
diffusion prior model it does not hurt the diversity. Diffu-
sion image decoder is the main reason that contributes to the
diversity and having diffusion or non-diffusion prior does
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Win: 35.14% Tie: 34.23% Lose: 30.63%

Figure 13. This figure illustrates the human preferences on the di-
versity of generated images between ECLIPSE prior with Kandin-
sky v2.2 diffusion image decoder vs. Kandinsky v2.2.

not contribute that significantly.

G. More Qualitative Evaluations

In this section, we provide more qualitative examples and
discuss them. We also provide comparisons based on the
diffusion image decoder used (i.e., Karlo and Kandinsky
v2.2). Finally, we discuss several failure cases.

G.1. ECLIPSE with Karlo Decoder

Figure 14 illustrates the comparison between Projec-
tion, Diffusion-Baseline, and ECLIPSE priors trained on
CC12M. It can be seen that ECLIPSE performs very well on
complex composition prompts. While Projection and Dif-
fusion baselines struggle to generate images aligned with
the target prompt. Figure 15 compares the ECLIPSE priors
trained on different datasets. Here, ECLIPSE prior trained
on MSCOCO does not always follow the target prompt ac-
curately and generates the lower quality images. That said,
the overall performance between all priors is very simi-
lar; suggesting that even a small amount of dataset is suf-
ficient to distill the knowledge from the pre-trained Vision-
Language models. Figure 16 compares the ECLIPSE mod-
els with various SOTA methods. Noticeably, ECLIPSE per-
forms better than the other baselines in terms of the abil-
ity to follow the target prompts. For instance, many SOTA
models cannot generate “empty blue vase”, “cat in space
suit”, and “blue bowl on white placemat”. Although we ob-
serve that ECLIPSE prior trained with MSCOCO does fol-
low the target text prompts but cannot generate high-quality
images, which aligns with our previous findings.

G.2. ECLIPSE with Kandinsky Decoder

Similarly, we analyze the qualitative results on Kandinsky
diffusion image decoders. Figure 17 compares the vari-
ous baselines priors with the ECLIPSE prior. We observe
that baselines perform very closely to the ECLIPSE prior,
which is the opposite of what we found in Figure 14. We
attribute this behavior to the change in the pre-trained CLIP
encoder. Additionally, as shown in Table 2 of the main
paper, both baseline priors perform very highly compared
to the same priors trained on the CC12M dataset for the



Karlo decoder. The only difference is the pre-trained vision-
language model. Therefore, the selection of the Vision-
Language model also plays a crucial role.

Figure 18 illustrates the comparison with ECLIPSE pri-
ors trained with different datasets. It can be observed that
with the use of the LAION-HighRes dataset not only did
image quality improve but small intrinsic details (such as
“backpack”, “belt”, etc.) also improved. Even in some
cases, prior training on the LAION subset performs bet-
ter as the increase in the amount of data improves the
performance. Figure 19 provides more qualitative ex-
amples to compare the ECLIPSE priors with other re-
spective SOTA methods. As also previously observed,
ECLIPSE prior trained on LAION subset performs very
close to the Kandinsky v2.2 in terms of following the text
prompts. While big SOTA models such as Stable Diffusion
v1.4/2.1, and Würstchen fall short despite being trained on
millions of data.

G.3. Failure Cases

Figure 20 shows some examples where ECLIPSE model
fails to follow the prompt precisely. It is still difficult for the
prior to learn something very unconventional. The model
fails at generating some composition prompts (first four im-
ages). It has been shown that vision-language models also
suffer from such composition understanding (e.g., “grass in
the mug” vs. “mug in the grass”). Therefore, improving the
Vision-Language model can further improve the capabili-
ties of unCLIP priors. Notably, ECLIPSE finds it difficult
to generate artistic imaginary images (such as “nebula ex-
plosion that looks like corgi”). However, such corner cases
can be only solved with more diverse high-quality datasets.

H. Future Work
In this work, we focus on improving text-to-image pri-
ors. We assume that there exists a pre-trained diffusion
image decoder that can be used as it is. To further im-
prove the parameter efficiency for training, several relevant
works on knowledge distillation and model compression
can help. Moreover, to improve the compositional abilities
for unCLIP models, a better vision-language model (such as
SigLIP) as the base model can be utilized to train the prior
model using ECLIPSE. However, this will require the diffu-
sion image decoder to be adjusted according to the new vi-
sion latent space. We leave this direction as the future work
as our paper primarily focuses on enhancing T2I priors.
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“a white 
envelop and a 
blue stamp”

“a cubic book 
and a 

cylindrical 
can of soup”

“wooden 
pencils and a 
leather sofa”

“a rubber ball 
and a fabric 

curtain”
“a girl on top 

of a cow”

Figure 14. Qualitative comparisons between ECLIPSE and baseline priors (having 33 million parameters) trained on CC12M dataset with
Karlo decoder. * prompt is: ”The bold, striking contrast of the black and white photograph captured the sense of the moment, a timeless
treasure memory.”

“a fluffy teddy 
bear and a 

leather belt”

“a wooden 
floor and a 

fabric shirt”

“a metallic 
spoon and a 
fluffy towel”

“a sheep on 
the left of a 

clock”

“The vibrant, 
swirling colors 
of the tie-dye 

shirt burst …”*

“The warm 
yellow light 
shone down 
on the cozy 

red armchair”

“The glowing 
moon rose 
above the 

distant hill and 
the calm sea”
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Figure 15. Qualitative comparisons of ECLIPSE priors with Karlo decoder trained on different datasets. * prompt is: ”The vibrant, swirling
colors of the tie-dye shirt burst with energy and personality, a unique expression of individuality and creativity.”



“one computer 
technical sketch 

white 
background”

“A portrait of a 
bear wearing a 
suit in the style 

of a Baroque 
painting”

“a cute blue cat”

“A Pikachu with an 
angry expression and 

red eyes, with red 
lightnings around it, 
black background, 

hyper realistic style”

“paper artwork, 
layered paper, 

colorful Chinese 
dragon 

surrounded by 
clouds”

Würstchen SDv1.4 SDv2.1 Kandinsky ECLIPSE
1B + 1480M 1B + 400M 1B + 2000M 1B + 177M 0.03B + 0.6M 0.03B + 5MParams + Dataset

Figure 16. Qualitative result of our text-to-image prior, ECLIPSE (with Karlo decoder), along with a comparison with SOTA T2I models.
Our prior model reduces the prior parameter requirements (from 1 Billion → 33 Million) and data requirements (from 115 Million → 12
Million → 0.6 Million).



“a black and 
white cat sits in 

a white sink”
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“a giraffe on 
the left of a 

train”

“a woman on 
the left of a 
microwave”

“the white cat 
is lying on the 

brown sofa”

“a brown book 
and a red 

sheep”

“the soft pink 
petals of the cherry 
blossom contrasted 

with the rough 
brown bark”

Figure 17. Qualitative comparisons between ECLIPSE and baseline priors (having 34 million parameters) trained on LAION-HighRes
subset dataset with Kandinsky v2.2 diffusion image decoder.

“a blue backpack 
and a brown 

sheep”
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“a black cat 
and a white 

whisker”

“a wooden 
table and a 

leather belt”

“a vase on the 
right of a cat”

“the fluffy 
white snow 
covered the 

rough brown 
dirt road”

“The crisp 
white sheet 
covered the 
lumpy blue 
mattress.”

Figure 18. Qualitative comparisons between ECLIPSE prior trained on MSCOCO and LAION datasets with Kandinsky v2.2 decoder.



“the blue bowl 
was on top of the 
white placemat”

“a spanish water 
dog breed as 

arthur morgan
from red dead 
redemption”

“the green plant 
was next to the 

blue empty vase”

“a cat in a space 
suit walking on 

the moon”

“a photo of a tree 
with eggs

growing on it”

Würstchen SDv1.4 SDv2.1 Karlo ECLIPSE
1B + 1480M 1B + 400M 1B + 2000M 1B + 115M 0.03B + 0.6M 0.03B + 12MParams + Dataset

Figure 19. More qualitative result of our text-to-image prior, ECLIPSE (with Kandinsky v2.2 decoder), along with a comparison with
SOTA T2I models. Our prior model reduces the prior parameter requirements (from 1 Billion → 33 Million) and data requirements (from
177 Million → 5 Million → 0.6 Million).

“A small cactus with a happy 
face in the Sahara desert.” “The grass in the mug.” “The mug in the grass.” “A blue horse and brown 

vase.”

“a nebula explosion made of 
shining stars that looks like 
the face of the corgi dog, 

detailed, creative.”

Figure 20. Instances where ECLIPSE encounters the challenges in following the target text prompts.



Figure 21. An example of human annotation for determining the image quality and caption alignment.

Figure 22. An example of human annotation for determining the most aesthetic image.
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