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1. Ablation Study
1.1. Effect of ViT Architecture

Table 1 investigates the impact of varying ViT sizes on the
generation of embeddings from RGB images. Our results
for the NYU Depth v2 [4] dataset suggest that ViT-base
yields optimal performance. Additionally, our observations
in the KITTI dataset align with a similar trend.

Table 1. Ablation Study on ViT Sizes: Performance comparison
of different ViT variants in terms of parameters and depth error
metrics on the NYUv2 [4] dataset. The results guide the selection
of ViT-base in our final architecture. Best results are in bold.

Classifier #Parameters RMSE↓ Abs Rel↓ δ1 ↑
ViT-base 86.6 M 0.218 0.059 0.978
deit-base 86.6 M 0.218 0.059 0.978
ViT-large 303.3 M 0.218 0.060 0.978
ViT-huge 630.8 M 0.219 0.060 0.978

Table 2. Ablation Study on dimension of Learnable Scene Em-
beddings (N): The table shows the impact of varying the dimen-
sion of learnable scene embeddings on the depth error metrics.
We observe a decrease in error with increasing N until saturation
occurs at N=100, prompting us to limit the model parameters to
N=100. Best results are highlighted in bold.

N RMSE↓ Abs Rel↓ log10 ↓ δ1 ↑
10 0.219 0.061 0.027 0.978
50 0.219 0.060 0.026 0.978
100 0.218 0.059 0.026 0.978
200 0.218 0.060 0.026 0.978

1.2. Additional Qualitative Ablation

In Fig. 2, we present supplementary qualitative ablation re-
sults that highlight the correlation between value of ViT log-

*Equal contribution.

its and the improvement in the predicted depth. The visu-
alization demonstrates that elevated value of ViT logits for
specific objects contribute to our model’s ability to focus on
those objects, enhancing the accuracy of predicted depth in
corresponding regions.

2. Architectural Details

2.1. Image Encoder

Similar to Latent Diffusion [6], we employed the VQVAE’s
encoder to transition from image space to latent space.

2.2. Upsampling Decoder

After obtaining the hierarchical feature map from denoising
UNet, the concatenated feature map undergoes upsampling,
transitioning from a resolution of 64× 64 back to H ×W .
Refer to Fig. 1 for a detailed view of the upsampling de-
coder architecture.
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Figure 1. Detailed architecture of the upsampling decoder, respon-
sible for upsampling the concatenated feature map to obtain the
final feature map at a resolution of H ×W , e = 192
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Figure 2. Enhanced visualizations showcasing improvements over VPD [9] in our model, facilitated by ViT embeddings employed as
conditional vectors for the denoising procedure. In the presented images, our model demonstrates heightened accuracy in detecting objects,
such as the television (blue in first image) and table lamp (green in second image) when these are detected with high probability by
ViT.

Table 3. Hyper-parameter settings for our model.

Hyper-parameter Value

Learning rate schedule one cycle
Min learning Rate 3× 10−5

Max learning Rage 5× 10−4

Batch Size 32
Optimizer AdamW [3]
βs in optimizer (0.9, 0.999)
Weight Decay 0.1
Layer Decay Rate 0.9
Embedding Dimension 192
Variance focus in SiLog loss 0.85
ViT Size ViT-base
Number of learnable emb. 100
epochs 25

3. Additional Experimental Details
3.1. Hyperparameters

For reproducibility of the results presented in the main pa-
per and the supplementary material, we provide a compre-

hensive list of the hyper parameters employed in our exper-
iments in Table 3.

4. Qualitative Results for Zero-Shot Perfor-
mance Across Datasets

In the main paper, we presented a quantitative comparison
of our method’s zero-shot performance. Here, we provide a
qualitative assessment of our method’s performance in com-
parison to ZoEDepth [1] across the HyperSim, DIODE,
Sun-RGBD and iBims1 datasets in Fig. 3, 4, 5 and 6.
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Figure 3. Qualitative Comparison on the HyperSim [5] Dataset. Our depth predictions are contrasted with those of Zoedepth[1]. The
first row displays RGB images, the second row shows groundtruth depth, the third row exhibits Zoedepth[1]’s depth, and the fourth row
showcases our depth predictions. To facilitate visual comparison, the colormap scale remains consistent across corresponding depth maps.
Our model, trained only on NYU Depth v2, is compared with Zoedepth[1], which is trained on 12 datasets and then fine-tuned on NYU
Depth v2.
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Figure 4. Qualitative Comparison on the DIODE [8] Dataset. Our depth predictions are contrasted with those of Zoedepth[1]. The
first row displays RGB images, the second row shows groundtruth depth, the third row exhibits Zoedepth[1]’s depth, and the fourth row
showcases our depth predictions. To facilitate visual comparison, the colormap scale remains consistent across corresponding depth maps.
Our model, trained only on NYU Depth v2, is compared with Zoedepth[1], which is trained on 12 datasets and then fine-tuned on NYU
Depth v2.
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Figure 5. Qualitative Comparison on the Sun-RGBD [7] Dataset. Our depth predictions are contrasted with those of Zoedepth[1]. The
first row displays RGB images, the second row shows groundtruth depth, the third row exhibits Zoedepth[1]’s depth, and the fourth row
showcases our depth predictions. To facilitate visual comparison, the colormap scale remains consistent across corresponding depth maps.
Our model, trained only on NYU Depth v2, is compared with Zoedepth[1], which is trained on 12 datasets and then fine-tuned on NYU
Depth v2.
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Figure 6. Qualitative Comparison on the iBims1 [2] Dataset. Our depth predictions are contrasted with those of Zoedepth[1]. The
first row displays RGB images, the second row shows groundtruth depth, the third row exhibits Zoedepth[1]’s depth, and the fourth row
showcases our depth predictions. To facilitate visual comparison, the colormap scale remains consistent across corresponding depth maps.
Our model, trained only on NYU Depth v2, is compared with Zoedepth[1], which is trained on 12 datasets and then fine-tuned on NYU
Depth v2.
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