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In this Supplementary Material we provide additional
details that were not included in the main manuscript due to
the limited space. We encourage the readers to also watch
the Supplementary Videos:

• video1 results.mp4 shows results of our ap-
proach on videos to highlight the temporal stability. All
results are estimated on a single-frame basis, without ad-
ditional smoothing.

• video2 comparison.mp4 compares HaMeR
with two state-of-the-art works for hand mesh recovery,
Mesh Graphormer [14] and FrankMocap [19].

• video3 novelview.mp4 visualizes novel views
of 3D hand mesh results for HaMeR.

Besides these videos, in this document, we provide more
discussion about our HInt dataset (Section S.1), and the
training data we use (Section S.2). Then, we present more
details about our HaMeR architecture (Section S.3) and
general implementation details (Section S.4). Finally, we
discuss the metrics used for evaluation (Section S.5) and
present more qualitative results (Section S.6).

S.1. HInt Dataset
In this section, we discuss how we selected the frames from
existing datasets to create HInt and describe the 2D hand
keypoint annotation process.

S.1.1. Image sources

In HInt, we include images from three existing video re-
sources, Hands23 [2], Epic-Kitchens [4], and Ego4D [8].
For each image, we annotate one hand. We also include an-
notations for sequences, where we annotate sparse frames
for hand sequences of Ego4D.

For Hands23 and VISOR, I follow their original dataset
splits. For Ego4D, we follow the original trainset split in our
trainset but source both our valset and testset from Ego4D
valset. It is because Ego4D does not release the hand-
bounding box and complete hand sequences we need to use

to annotate hand keypoints. Ego4D FHO splits via clip id
where we found there are similar contents spanning among
different splits. To alleviate this, we split via video id in out
splits, making sure clips from the same video do not span in
different splits.
Images: We select frames with hands from each of the
source datasets to annotate. For Hands23, we choose from
the New Days subset which are frames from YouTube
videos. For Epic-Kitchens, we choose frames from the
VISOR [5] benchmark. For Ego4D, we choose frames
from the critical frames (pre 45, pre 30, p 15, pre-frame,
contact-frame, point-of-no-return frame, and post-frame)
which are defined and annotated in the FHO (Forecasting
Hands and Objects) task.

In our validation and test set, we do random sampling to
keep the data distribution the same as in the source datasets.
In the training set, we include more challenging samples to
be complementary to existing 2D keypoint datasets. Thus,
for Hands23 and Epic-Kitchens, we randomly sampled half
of the samples and enforced the other half to contain hand-
object or hand-hand interaction. For Ego4D, we do random
sampling across critical frames, since these frames typically
include interactions.
Sequences: We randomly sample sequences from Ego4D
FHO (Forecasting Hands and Objects) and annotate one
hand for 5 critical frames (pre 45, pre 30, p 15, pre-frame
ans contact-frame).

S.1.2. 2D keypoints annotation

Preparation. Annotating 2D hand keypoints from scratch
is hard. In HInt, we use the help of an existing method to
get rough hand keypoint estimates, and then workers are
asked to refine the keypoint locations. For each hand, we
feed the image and the ground-truth hand bounding box to
MMPose [3] to get the initial 2D keypoint locations.
Annotation instructions. Given the Hand Keypoints An-
notation Instructions (appended at the end of this docu-
ment), workers refine the 21 hand keypoint locations to
match the exact locations in the image. Additionally, each
keypoint is annotated for “existence” and “occlusion”. To
the best of our knowledge, our dataset is the first one to in-
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clude “occlusion” annotation for 2D hand keypoints.

S.1.3. Consistency checking

To check the annotation quality, we have a small amount
of hands being annotated twice without asking the workers
to check for consistency. Out of the 100 hands that were
annotated twice, 90 hands were returned with valid keypoint
annotations. Thus, we conducted our consistency analysis
based on the 90 valid annotations in Figure S.1.

In Figure S.1 (a), we compare the offset between the two
versions of annotations, normalized by the palm size (Eu-
clidean distance from P 0 to P 9). For all visible joints,
94.6% of them are within ×0.25 of palm size. In Figure S.1
(b) and (c), we checked the confusion matrix for existence
and occlusion annotation and found that 100% of the exis-
tence and 90.5% of the occlusion annotation are consistent.

S.1.4. Dataset splits

Eventually, we get annotated hands from New Days
(11,976), Epic-Kitchens (5,312), and Ego4D (23,174).
Within the Ego4D annotated hands, we include 9,277 hands
that come from 2,384 sparsely annotated sequences and
could help future evaluation of temporal tasks. The detailed
splits are presented in Table S.1.

Sources Train Val Test

Hands23 images 9,666 550 1,760
Epic-Kitchens images 2,780 625 1,907
Ego4D images 11,652 514 1,731
Ego4D sequences - 2,320 6,957

Total 24,098 4,009 12,355

Table S.1. Data splits for HInt.

S.2. Training data
For our training, we consolidate multiple hand datasets with
2D or 3D hand annotations. In Table S.2 we list the existing
datasets we used for training, along with the number of hand
examples per dataset. We also report the type of annotations
of each dataset (2D or 3D), the setting they were collected
(controlled multi-camera setup, synthetic or in-the-wild).
For training our HaMeR model, we sample with different
probabilities from each dataset, i.e., FreiHAND: 0.25, In-
terHand2.6M: 0.25, MTC: 0.1, HO3D: 0.05, H2O3D: 0.05,
DEX YCB: 0.05, RHD: 0.05, Halpe: 0.05, COCO Whole-
Body: 0.1 and MPII NZSL: 0.05.

S.3. HaMeR architecture
Our HaMeR model uses a ViT-H/16 (“huge”) image en-
coder. We start from an encoder that is pretrained on
2D body keypoint localization [22] and we finetune it for

Method # Examples 2D/3D Setting

FreiHAND [26] 130k 3D Multi-camera
InterHand2.6M [16] 1.4M 3D Multi-camera
MTC [21] 360k 3D Multi-camera
HO3D [9] 122k 3D Multi-camera
H2O3D [9] 83k 3D Multi-camera
DEX YCB [1] 400k 3D Multi-camera
RHD [25] 62k 3D Synthetic

Halpe [6] 34k 2D In-the-wild
COCO WholeBody [10] 79k 2D In-the-wild
MPII NZSL [20] 15k 2D In-the-wild

Table S.2. Existing datasets with hand annotations that we used
when training HaMeR. We list the number of hand examples per
dataset, the type of annotations (2D/3D) and the setting for the
data collection.

MANO [18] parameter prediction. The input image has di-
mension 256× 192 and the ViT encoder produces 16× 12
tokens, each with dimension 1280. The transformer head is
a transformer decoder that takes as input a single learnable
1024-dimensional token and cross-attends to the ViT out-
put tokens. Following the design of HMR2.0 [7], the trans-
former has 6 layers, hidden dimension of 1024 and 8 (64-
dim) heads for self-attention and cross-attention. From the
output of the transformer head, we readout the MANO and
camera parameters Θ.

S.4. Implementation details
For training HaMeR, we use the AdamW optimizer [15]
and we set the learning rate to 1e-5, the weight decay to
1e-4, β1 = 0.9 and β2 = 0.999. We train with an effective
batch size of 1024 for 420k iterations. We perform typical
augmentations during training [7], i.e., scaling the bounding
box, rotating, translating the center of the bounding box and
applying color jitter. Our losses are balanced with different
factors — 0.05 for the loss on 3D keypoints, 0.01 for the
loss on 2D keypoints, 0.001 for the loss on pose parame-
ters, 0.0005 for the loss on shape parameters and 0.0005 for
the adversarial loss. For the regression target, we represent
the MANO pose parameters θ using the 6D representation
proposed by Zhou et al. [24]. Following previous work,
e.g., [14, 19], we train a single HaMeR model for the recon-
struction of the right hand. To operate on a left hand, we
apply left-right flipping to both the input image before giv-
ing it as input to the network and the output reconstruction
which results to the corresponding left hand in 3D.

S.5. Metrics
In our evaluation, we use metrics that are common in the
related literature.
2D Pose: We use PCK [23] to measure 2D pose accuracy.
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Figure S.1. Annotation consistency checking. (a) Hexbin plot of offset between two versions of annotations. (b) Confusion matrix of
existence annotation. (c) Confusion matrix of occlusion annotation.

PCK is the Percentage of Correctly localized Keypoints.
We consider a keypoint to be correctly localized if its dis-
tance from the ground truth location is less than a threshold.
We report PCK at different values for the threshold, @0.05,
@0.1 and @0.15 of the image size.
3D Pose: To measure the accuracy of the 3D pose (3D
joints), we report the PA-MPJPE [11] and AUCJ [26] met-
rics. PA-MPJPE measures the Mean Per Joint Position Er-
ror, i.e., the average L2 error across all joints, after per-
forming Procrustes alignment between the predicted and the
ground-truth 3D Pose. AUCJ is the Area Under the Curve
after computing the 3D PCK for a range of thresholds.
3D Mesh: To measure the accuracy of the 3D mesh, we
report PA-MPVPE, AUCV, F@5mm and F@15mm [26].
The first two metrics are similar to PA-MPJPE and AUCJ
respectively, but the errors are computed over the recon-
structed MANO vertices instead of the joints. F@5mm
and F@15mm are the F-scores at two different thresholds,
i.e., the harmonic mean between recall and precision be-
tween two sets of points [12], the prediction and ground
truth mesh. With the two thresholds, we can evaluate the
accuracy at a fine and a coarse scale.

S.6. Results and analysis
In this section, we provide more quantitative and qualitative
results for our approach, as well as failure cases and limita-
tions.

S.6.1. Effect of pretraining

First, we want to evaluate the effect of the pretraining strat-
egy for HaMeR. We use the ViT-B backbone and two pre-
training strategies; pretraining on ImageNet and pretraining
on the 2D human pose estimation task (after having pre-
trained on ImageNet first, similar to the ViTPose [22] strat-
egy). We present the results in Table S.3, when evaluating
the models on HInt. As we can see, the model pretrained on

the 2D pose task consistently outperforms the model pre-
trained on ImageNet.

Backbone (Pretraining) New Days VISOR Ego4D
@0.05 @0.1 @0.15 @0.05 @0.1 @0.15 @0.05 @0.1 @0.15

A
ll ViT-B (ImageNet) 31.1 64.8 81.2 28.3 63.3 81.3 24.1 56.1 74.8

ViT-B (ViTPose) 39.6 72.1 85.4 37.5 71.6 86.2 31.8 63.3 79.2

V
is

. ViT-B (ImageNet) 38.3 73.9 87.6 34.6 71.3 86.4 30.1 65.0 81.9
ViT-B (ViTPose) 49.1 81.8 91.4 47.0 81.0 91.7 41.6 74.9 87.4

O
cc

l. ViT-B (ImageNet) 18.7 48.4 69.6 18.3 50.2 72.2 17.2 44.7 65.6
ViT-B (ViTPose) 23.5 54.9 74.5 23.1 56.9 77.7 19.3 48.7 69.4

Table S.3. Effect of pretraining. We train two versions of
HaMeR using different pretraining strategies, i.e., pretraining on
ImageNet, or on the 2D human pose estimation task (ViTPose). In
both cases we use a ViT-B backbone. We report results on HInt.
Pretraining on the 2D pose estimation task, outperforms vanilla
ImageNet pretraining.

S.6.2. Cross-dataset generalization of HInt

Besides the vanilla version of our HaMeR model, in the
main paper we show the results for a version that is
trained on data from HInt. These models are evaluated on
HInt. To better demonstrate the cross-dataset evaluation
of HInt, we also evaluate these models on the Assembly-
Hands dataset [17] (since the performance on FreiHAND
and HO3D is already saturated). We report our results in
Table S.6.2. We observe that training on HInt improves per-
formance on AssemblyHands, which highlights the impor-
tance of the HInt dataset.

S.6.3. Comparison with ViTPose-Hands

For further analysis, we compare our HaMeR model with
the publicly available ViTPose model that is trained for the
task of 2D hand keypoint detection. In Table S.5, we report
results for these models on HInt. We observe that HaMeR
outperforms this ViTPose baseline on the 2D metrics, while
also being able to produce the full 3D shape of the hand.



PA-MPJPE↓ MPJPE↓

Ours (no HInt) 14.3 43.5

Ours (with HInt) 13.8 42.6

Table S.4. Effect of including HInt in training. We evaluate two
models on AssemblyHands [17]. For the first model, we do not use
HInt data for training (top row), while for the second model, we
use HInt data for training (second row). We observe that training
on HInt improves performance on AssemblyHands.

Method New Days VISOR Ego4D
@0.05 @0.1 @0.15 @0.05 @0.1 @0.15 @0.05 @0.1 @0.15

A
ll ViTPose-Hands 32.2 51.3 61.3 40.0 64.5 75.6 23.3 41.0 52.1

HaMeR 49.4 79.3 89.8 44.4 77.5 89.7 40.3 72.4 85.2

V
is

. ViTPose-Hands 44.0 62.5 70.1 55.7 77.1 83.6 35.0 52.9 61.9
HaMeR 62.2 89.0 95.1 58.5 88.4 95.0 53.9 84.2 91.8

O
cc

l. ViTPose-Hands 13.9 32.5 46.3 21.2 46.9 63.0 10.3 26.0 38.5
HaMeR 28.4 62.4 80.1 26.9 61.8 81.2 24.3 58.7 77.3

Table S.5. Comparison of HaMeR with ViTPose-Hands. We
compare our HaMeR model with the publicly available ViTPose
model for 2D hand keypoint detection. Results are presented
on HInt, where HaMeR clearly outperforms the ViTPose-Hands
model.

S.6.4. Qualitative results

We show additional results of HaMeR on various Internet
images in Figure S.2. HaMeR returns faithful reconstruc-
tions when the hands are under heavy occlusion or in gloves,
when the hands are from art paintings or from robotic
hands, as well as for hands captured from both egocen-
tric and third-person perspectives. Moreover, we provide
more qualitative comparisons with state-of-the-art methods
in Figure S.3. We also encourage the reader to watch the
Supplementary Video, video2 comparison.mp4 for
comparisons in video form.

S.6.5. Failure cases and limitations

We show representative failure cases in Figure S.4. HaMeR
may fail for input hands with extreme finger poses, un-
likely appearance or hand shape, as well as extreme occlu-
sion. Moreover, we present the effect of depending on the
hand side information in Figure S.5. This dependency on
hand bounding box and hand side is common in previous
work [14, 19]. In our pipeline, we adopt the hand detector
from Hands23 [2] to get the hand box and hand side first
and then feed the hand information to HaMeR.
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Figure S.2. Qualitative results. We present qualitative results of our approach on various challenging Internet images. HaMeR is
particularly robust and can handle cases with heavy occlusion and interactions with objects or other hands.
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Figure S.3. Qualitative comparison. We compare our approach qualitatively with state-of-the-art methods for hand mesh reconstruction.
The previous baselines include METRO [13], Mesh Graphormer [14] and FrankMocap [19]. We encourage the reader to also watch the
Supplementary Video, video2 comparison.mp4, for more comparisons over time.
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Figure S.4. Failure cases. We present representative failure cases of our approach. HaMeR may fail under extreme finger poses, unnatural
appearance, extreme occlusions, or unnatural shape (e.g., robotic hand with finger sizes that do not follow the typical human proportions).
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Figure S.5. Effect of hand side information. Similar to prior work [14, 19], HaMeR requires the hand side (left/right) information for
the input image. When the given hand side is correct (left), the reconstructions align well with the 2D hands; when the given hand side is
incorrect (right), the reconstructions are expected to be incorrect (i.e., since the model reconstructs a hand of the opposite side), but HaMeR
often returns a reasonable interpretation of the input image.
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