
Appendix

In Appendix A we provide additional details on how the
different tasks of Ego4D [25] are modelled as a tempo-
ral graph, expanding Sec. 4.1 of the main paper. Ap-
pendix B provides additional implementation details of the
Task Translation model and how the EgoT2 architecture
was adapted to our scenario. Appendix C presents addi-
tional experiments to evaluate the role of negative transfer
in MTL. A more in-depth comparison of the methods on the
test-set of the Ego4D challenges is shown in Appendix D.
Finally, we show more qualitative results in Appendix E.

A. Additional implementation details

A.1. Temporal modelling

Action Recognition (AR) Action annotations are derived
from the LTA benchmark. Each action is an annotated seg-
ment lasting approx. 8.0 seconds, and actions may tempo-
rally overlap. To provide each action with additional tem-
poral context from the surrounding, we process actions in
fixed length sequences of w = 9 actions, each mapped to
a node in the temporal graph. The target action is the cen-
tral node of the sequence and the classification loss is com-
puted only on this node. The window size was selected to
be larger than the receptive field of the temporal GNN after
3 layers of graph convolution, which we observed to be the
optimal depth of the network. Furthermore, using fixed size
sequences allows to train the model on videos containing a
variable and possibly large number of actions.

Long Term Anticipation (LTA) LTA is formulated as an
action anticipation task in which the model is shown N = 2
input clips and has to predict the actions occurring in the fol-
lowing Z = 20 timestamps. As in AR, clips lasts approx.
8.0 seconds and may overlap. Therefore, the effective tem-
poral window seen by the model may vary between 8.0 and
16.0 seconds, depending on how much the input clips over-
lap. Input clips and future timestamps are mapped to nodes
in the graph, with the latter initialised with the mean of the
features of the input clips. Edges connect each node to its
subsequent and preceding nodes. Additionally, nodes that
represent future actions to be predicted are also connected
to the input clips. This connectivity pattern allows local
temporal reasoning, e.g. to rearrange the order of actions in
the anticipation window, while using the global context pro-
vided by the input clips to guide the prediction. Similarly to
AR, there is a one-to-one correspondence between actions
and nodes of the graph.

Object State Change Classification (OSCC) and Point

of No Return (PNR) Unlike action-based annotations,
OSCC and PNR do not necessarily match the boundaries

of an action segment of the video. Each segment lasts ap-
prox. 8.0 seconds and is uniformly divided in 4 (OSCC)
or 16 (PNR) smaller sub-segments that are mapped to the
nodes of the graph.

A.1.1 Temporal model sharing across tasks

A key premise of EgoPack is that different tasks are mod-
elled using the same shared temporal backbone architecture,
even though the temporal granularity of the different tasks
may vary. To achieve this, we do not constraint nodes to
represent the same fixed size temporal window across all
tasks. Through the utilisation of a multi-task learning pro-
cess, we force the network to jointly learn tasks with dif-
ferent temporal resolutions, enabling reasoning at different
temporal scales. This formulation is particularly effective
to prepare the model to new tasks, as the model has already
learnt to combine tasks with potentially different temporal
resolutions during the MTL training. As an example, con-
sider the case in which the MTL model is trained on AR,
LTA, OSCC and PNR. In this case, the nodes of the tem-
poral graph represent actions when the task is AR or LTA,
or shorter temporal sub-segments for OSCC and PNR. To
train EgoPack, we update the weights of Mt for all novel
tasks, except LTA for which we observe better performance
by not updating the temporal model.

B. Task Translation Implementation Details

The objective of the Task Translation experiments is to
compare the task translation mechanism proposed by Ego-
T2 [68], which learns a mapping between features extracted
from different task-specific models, to EgoPack which
leverages past gained knowledge under the form of task-
specific prototypes. For fair comparison, we re-implement
this mechanism and evaluate it on top of the same temporal
backbone and the same pre-extracted features of EgoPack.
We start from the EgoT2-g model and employ the same
architecture for the Task Translation, which consists of a
1-layer encoder-decoder stack, each with 8 heads, dropout
0.1 and features size 1024. The input of the Task Transla-

tion is provided by an ensemble of Temporal Graph mod-
els, one for each task. The whole architecture is trained
for one task at the time, as EgoPack, and only the encoder-
decoder architecture is updated, while the temporal models
that compose the ensemble are kept frozen. We train Task

Translation for 30 epochs, using the Adam optimiser with
learning rate 1⇥ 10�4 (with the exception of OSCC which
uses learning rate 1 ⇥ 10�3), batch size 16, linear warmup
for the first 5 epochs and weight decay 1⇥ 10�5.

C. Additional Multi-Task Experiments

MTL suffers from negative transfers between different
tasks, and fine-tuning an MTL on a new task may not be



AR OSCC LTA PNR

Verbs Top-1 (%) Nouns Top-1 (%) Acc. (%) Verbs ED (#) Nouns ED (#) Loc. Err. (s) (#)

Temporal Graph 24.25 30.43 71.26 0.754 0.752 0.61

Multi-Task Learning 22.16 29.34 70.93 0.740 0.746 0.62
Multi-Task Learning (+ PCGrad [71]) 22.01 29.46 70.86 0.737 0.746 0.63

Table 4. Results of PCGrad [71] compared to vanilla Multi-Task Learning.

PNR
Pre-trained

on Ego4D [25]

Trained on

pre-extracted features
Loc. Error (s) (#)

CNN LSTM [25] 7 7 0.76
EgoVLP [42] 3 7 0.67
EgoT2 [68] 7 7 0.66

EgoPack 7 3 0.66

OSCC
Pre-trained

on Ego4D [25]

Trained on

pre-extracted features
Accuracy (%)

I3D RN-50 [25] 7 7 67.6
EgoVLP [42] 3 7 74.0
EgoT2 (EgoVLP) [68] 3 7 75.0

EgoT2 (I3D) [68] 7 7 71.0
EgoPack (SlowFast) 7 3 72.1

LTA
Pre-trained

on Ego4D [25]

Trained on

pre-extracted features
Verb (#) Noun (#) Action (#)

SlowFast [25] 7 7 0.739 0.780 0.943
EgoT2 [68] 7 7 0.722 0.764 0.935
HierVL [1] 3 7 0.724 0.735 0.928
I-CVAE [43] 7 3 0.741 0.740 0.930
EgoPack 7 3 0.721 0.735 0.925

Table 5. Comparison of EgoPack on the test set of the Ego4D benchmarks, highlighting differences in terms of additional Ego4D pretraining
and use of pre-extracted features.

the most effective approach to retain knowledge learned in
the MTL training process. We observe evidence of this
phenomenon in Table 6, where we compare the MTL on
all tasks with two finetuning approaches to extend a model
trained on three tasks to a fourth novel task. MTL+FT fine-
tunes the model for the novel task, as already shown in Ta-
ble 2, while MTL+TT replaces the EgoPack’s second stage
with a decoder analogous to TT, which learns the new task
as a “recombination” of the previous tasks.

Brute Force Multi-Task Learning Table 7 presents a
comprehensive analysis of MTL on all task combinations,
to assess the effect of negative transfer when a smaller sub-
set of tasks is used. Even with fewer tasks, MTL still suffers
from negative transfer across tasks and does not represent an
upper bound for EgoPack, which is showing a clear advan-
tage.

Minimising negative transfer Various approaches have
been proposed to address the issue of negative transfer in
multi-task learning [9, 27, 38, 59, 63, 71]. Although the

multi-task setting significantly differs from the settings pro-
posed for EgoPack, we provide a comparison with one of
these methods, PCGrad [71], which projects tasks’ gradi-
ents on the normal plane of all the other gradients to remove
interference among tasks. Apart from minimal fluctuations,
PCGrad does not appear to significantly improve over MTL,
showing that these methods may still be insufficient to ef-
fectively reduce the negative transfer, as shown in Table 4.

D. Comparison of methods on the test-set

We summarise the main differences between EgoPack and
the other methods on the test-set in Table 5, extending Ta-
ble 3 of the main paper and highlighting differences in terms
of additional Ego4D pretraining and use of pre-extracted
features. EgoPack relies on pre-extracted features from
Omnivore [24], which was trained on Kinetics-400 [4] for
action recognition. As a result, these features are highly se-
mantic and may struggle to encode finer temporal details re-
quired by certain tasks, e.g. to detect changes in the objects
being manipulated in OSCC or PNR. Most other methods,
with the exception of I-CVAE [43], train also their features
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Figure 7. Agreement ratio between predictions from different tasks when the novel task is Action Recognition (Fig. 7a and Fig. 7b) and
Object State Change Classification (Fig. 7c). Fused represents the sum of the logits from the auxiliary tasks.

AR OSCC LTA PNR

Verbs Top-1 (%) Nouns Top-1 (%) Acc. (%) Verbs ED (#) Nouns ED (#) Loc. Err. (s) (#)

MTL (All tasks) 22.05 29.44 71.10 0.740 0.746 0.62
MTL (3 tasks) + FT 24.36 31.31 71.60 0.744 0.754 0.62
MTL (3 tasks) + TT 22.30 29.50 70.96 0.738 0.757 0.62

EgoPack 25.10 31.10 71.83 0.728 0.752 0.61

Table 6. Comparison of vanilla MTL and two finetuning strategies to extend MTL models to novel tasks.

extraction backbones on Ego4D benchmarks’ data, which
allows to learn task-specific models more suited for the task
at hand. On the contrary, we do not update the features ex-
traction backbone when training EgoPack.

When evaluating EgoPack on the test-set, we also ob-
serve a significant performance gap compared to other
methods that rely on some amount of additional data from
Ego4D, while the benchmarks data are more limited in size.
HierVL [1] is pretrained on the full Ego4D using a con-
trastive video-language objective with short-term and long-
term textual narrations. EgoVLP [42] is pretrained on a
large subset of Ego4D using a video-language contrastive
objective with action-aware positive samples and scene-
aware negative samples. The only method directly compa-
rable to EgoPack in terms of pre-training data and parame-
ters updated is I-CVAE [43], which uses the SlowFast [16]
features released by [25] for the LTA benchmark. The ex-
tension of EgoPack to additional backbones, possibly with
end-to-end finetuning, is outside of the scope of this paper
and is left as a future work. For OSCC, we report the results
of EgoPack using SlowFast features instead of Omnivore as
they showed better performances compared to the latter.

E. Additional qualitative results

EgoPack fuses the predictions coming from different task
perspectives by summing the task-specific logits. We show
in Fig. 7 the agreement ratio between the predictions pro-
duced by the different tasks yk

i and the final output com-

puted as the sum of the individual contributions yi =P
k y

k
i . In Action Recognition, we observe low agreement

both between task pairs and with respect to the fused pre-
dictions, suggesting that they contribute complementary in-
formation to the novel task. On the other hand, in OSCC,
tasks predictions tend to be more consistent across tasks.
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