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7. Appendix
In the supplementary material, we provide the following
contents:
• Additional implementation details of the feature extrac-

tion network and descriptor prediction network ϕmlp;
• Quantitative evaluation on each scene;
• A 3-minute video comparing our stabilized videos with

results by other methods;
• Runtime analysis of the proposed method;
• Discussion on limitations of our method.

A. Additional Implementation Details

Our feature extraction network follows IBRNet [34]. And
the architecture of the descriptor prediction network ϕmlp

mentioned in Sec. 3.1 is shown in Fig. 10. The inputs of
ϕmlp for the sampled spatial points include: (1) input fea-
tures from neighboring views, obtained by concatenating
the image and feature Ft output by the feature extraction
network ; (2) the relative viewing direction ∆dt; and (3) the
corrected color c′t output by the color correction module.
For predicting the density σ, we use an MLP which takes in
the concatenation of the image feature Ft and its mean, vari-
ance to generate an intermediate feature F∗

t and the pooling
weight ω∗

t . The density σ for each sampled spatial point is
then calculated by weighted pooling F∗

t with ω∗
t . In order

to obtain the color c, another MLP takes the concatenation
of relative viewing direction ∆dj and F∗

t to produce color
blending weights ωc

t−T for each neighboring view. Then
we calculate the color c by weighted summing c′t with the
weights ωc

t−T .
The selection of frames in the sliding window is not

strictly continuous. For our experiments, after frame T,
frames T+1∼T+3 are selected to ensure image quality, and
frames T+10, T+15, and T+20 contribute to a sufficiently
expansive field of view. It should be noted that the window
size is adjustable as needed. We choose thirteen frames to
balance efficiency and effectiveness, maintaining full frame
in all scenarios across the three common datasets. Further
details will be included in our revised version.

B. Quantitative Evaluation

Fig. 11 shows the per-scene evaluation results on the
NUS [20], the Selfie [38], and the DeepStab [33] datasets.
Our method and 2D-based full-frame methods [5, 24, 42]
achieve the highest cropping ratio of 1 as all these methods
generate no-cropping videos. On the distortion and stabil-
ity metrics, our method performs on par with the state-of-
the-art 3D-based method [11] and outperforms all 2D-based

Method Runtime

Grundmann et al. [7] 589ms
Bundle [20] 7264ms
Yu and Ramamoorthi [40] 6501ms
Zhao et al. [42] 168ms
Deep3D [11] 708ms
DIFRINT [5] 1708ms
FuSta [24] 9864ms
Ours 2836ms

Table 3. Per-frame runtime comparison.

methods [5, 7, 20, 24, 40, 42]. In summary, the proposed
method demonstrates effectiveness and robustness across
diverse scenarios.

C. Video Results

We provide a 3-minute video comparing our stabilized
videos with results by other methods as an attachment in
this supplementary material. One can download and play
for a better view of our method.

D. Runtime Analysis

We test the runtime of CPU-based methods [7, 20] on a lap-
top with i7-10700 CPU. All GPU-based methods [5, 11, 24,
40, 42] including ours are evaluated with a single Nvidia
RTX3090 GPU on a server. We perform the per-frame run-
time comparison on videos with resolution of 854 × 480.
The quantitative results are summarized in Table 3 for ref-
erence. It should be noted that this paper focuses on promot-
ing the performance; efficiency is not our main emphasis.

All stabilizers, including the slowest baseline in Table 3,
can stabilize a 100-frame video within 17 minutes without
scene-specific training. However, NeRF-based methods de-
mand per-scene training, and the runtime is impractical for
video stabilization applications. For instance, LocalRF [26]
and DynIBaR [14] require approximately 3 hours and 10
days, respectively, to stabilize the 100-frame video.

E. Limitations

While our method performs well in video stabilization, it
has two limitations. First, our method relies on accurate
prior inputs provided by the preprocessing approach [11],
such as camera poses. Moreover, our method processes
videos slower than some lightweight models. In the fu-
ture, we plan to boost the efficiency of our method, either
by devising a simpler descriptor prediction network, or by
exploring engineering ways for lightweight designs.



… … … MLP … … MLP density  σ

MLP

color  c

weighted
pooling

vμ

μimage feature element-wise mean of v element-wise variance of

corrected color relative viewing direction pooling weight

element-wise multiplication

…

Figure 10. Architecture of our descriptor prediction network ϕmlp.
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Figure 11. Quantitative evaluation on each scene.
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