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Supplementary Material

1. Overview

The supplementary material is organized into the following
sections:

• Section 2: Additional qualitative results on on cross-
dataset evaluation.

• Section 3: Additional ablation study on overall frame-
work.

• Section 4: Additional ablation of generation process.
• Section 5: Additional ablation of the number of augmen-

tors.
• Section 6: Hyperparameters’ analysis.
• Section 7: Experiments on the multi-frame setting.
• Section 8: Visualizations of distributions between source

data and synthesized data.
• Section 9: Visualizations of weak-augmented and strong-

augmented poses.
• Section 10: Details of Laplacian weighted similarity.

2. Extra Qualitative Results on Cross-dataset
Evaluation

Fig. 1 shows extra qualitative results on cross-dataset eval-
uation (3DHP on the left side and 3DPW on the right side).
HRNet [12] is applied as the 2D pose estimator and VPose
[10] is the 2D-to-3D lifting backbone. We use Source-
only, PoseAug [14], DH-AUG [6], Ours, and Ground
Truth (GT) for qualitative comparison. It is evident that
our method outperforms other baselines significantly.

3. Extra Ablation Study on the Overall Frame-
work

Table 1. Ablation study on the overall framework with varied 2D
pose predictions and 2D-to-3D lifting backbones.

Method 2D-to-3D Lifting Backbones 2D Pose Predictions
DET CPN HR GT

Ours w/o DiffGen SemGCN 80.1 78.8 74.0 71.8
Ours w/o DiffDis SemGCN 79.4 77.2 73.5 70.9

Ours w/o MetaOpt SemGCN 77.9 75.7 72.4 70.3
Ours SemGCN 76.5 74.1 70.7 68.9

Ours w/o DiffGen VPose 77.1 76.7 68.6 69.0
Ours w/o DiffDis VPose 76.7 74.8 67.0 67.3

Ours w/o MetaOpt VPose 74.5 72.4 64.9 65.5
Ours VPose 72.4 70.9 62.4 63.1

Ours w/o DiffGen PoseFormer 76.7 75.9 68.8 69.5
Ours w/o DiffDis PoseFormer 76.1 75.0 67.2 67.7

Ours w/o MetaOpt PoseFormer 74.5 72.3 65.3 66.1
Ours PoseFormer 72.2 70.5 62.8 63.4

Ours w/o DiffGen MixSTE 75.4 74.9 71.8 71.2
Ours w/o DiffDis MixSTE 74.7 73.0 66.6 66.4

Ours w/o MetaOpt MixSTE 72.8 71.3 63.4 63.5
Ours MixSTE 70.5 68.2 60.4 61.0

Tab. 1 offers valuable insights into the impact of using
different 2D pose detectors like DET [4], CPN [2], HR-
Net (HR) [12] and Ground Truth (GT) for 2D poses pre-
dictions, and 2D-to-3D backbones SemGCN [15], VPose
[10], PoseFormer [16], MixSTE [13] on the generaliza-
tion for the ablation on the overall framework. Here we use
MPJPE values on the 3DHP [11] dataset for comparisons.
For instance, with GT as 2D predictions and PoseFormer as
the backbone, the absence of differential generation (Dif-
fGen) leads to a 6.1mm increase, while excluding differ-
ential discrimination (DiffDis) results in a corresponding
4.3mm increase. As for the removal of meta optimization
(MetaOpt), it causes a degradation of 2.7mm. The results
highlight the integral role of each module in enhancing the
overall framework’s efficacy across diverse 2D predictions
and backbones, affirming our method’s robustness and ver-
satility in improving DG for 3D HPE performance.

4. Extra Ablation Study on the Generation
Process

Table 2. Ablation study on the generation process with varied 2D
pose predictions and 2D-to-3D lifting backbones.

Method 2D-to-3D Lifting Backbones 2D Pose Predictions
DET CPN HR GT

Ours w/o W-PP SemGCN 82.0 80.4 74.7 72.9
Ours w/o S-PP SemGCN 80.3 79.2 73.9 71.7

Ours w/o W-OG SemGCN 77.9 75.6 72.5 69.8
Ours w/o S-OG SemGCN 79.8 78.7 74.3 71.1

Ours SemGCN 76.5 74.1 70.7 68.9
Ours w/o W-PP VPose 79.5 78.8 73.4 72.6
Ours w/o S-PP VPose 77.1 76.9 72.2 71.3

Ours w/o W-OG VPose 73.7 73.1 65.7 65.8
Ours w/o S-OG VPose 76.2 75.6 68.4 68.2

Ours VPose 72.4 70.9 62.4 63.1
Ours w/o W-PP PoseFormer 78.9 78.2 73.7 73.2
Ours w/o S-PP PoseFormer 76.7 76.4 73.0 72.1

Ours w/o W-OG PoseFormer 73.3 72.9 65.6 66.3
Ours w/o S-OG PoseFormer 76.0 75.6 68.8 68.5

Ours PoseFormer 72.2 70.5 62.8 63.4
Ours w/o W-PP MixSTE 78.3 77.1 72.5 72.4
Ours w/o S-PP MixSTE 75.9 74.2 66.3 66.8

Ours w/o W-OG MixSTE 72.0 70.6 62.6 63.3
Ours w/o S-OG MixSTE 74.8 73.4 64.5 64.7

Ours MixSTE 70.5 68.2 60.4 61.0

Tab. 2 provides observations regarding the influence of
various 2D predictions and 2D-to-3D backbones on the gen-
eralization in the context of the generator ablation study.
Here we use MPJPE values on the 3DHP dataset [11] for
comparisons. For instance, with GT as 2D predictions and
PoseFormer as the backbone, the absence of W-PP leads to
a 9.8mm increase, while excluding S-PP results in a cor-
responding 8.7mm increase. As for the removal of W-OG
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Figure 1. Extra qualitative results on cross-dataset evaluation. Left is the 3DHP dataset, and right is the 3DPW dataset.

and S-OG, they cause a degradation of 2.9mm and 5.1 re-
spectively. The results underscore the crucial contribution
of each module in augmenting the effectiveness of the gen-
eration process across various 2D predictions and backbone
models. This affirms the robustness and versatility of our
method in enhancing the performance of DG for 3D HPE.

5. Extra Ablation Study on the Number of
Augmentors

Table 3. Ablation study on the number of augmentors with varied
2D pose predictions and 2D-to-3D lifting backbones.

Method 2D-to-3D Lifting Backbones 2D Pose Predictions
DET CPN HR GT

WA SemGCN 88.4 87.7 87.3 85.3
SA SemGCN 81.7 80.5 77.2 76.9

Ours SemGCN 76.5 74.1 70.7 68.9
WA VPose 79.5 77.6 75.0 74.5
SA VPose 76.1 75.9 72.7 71.0

Ours VPose 72.4 70.9 62.4 63.1
WA PoseFormer 80.8 78.2 75.4 75.1
SA PoseFormer 75.0 74.6 70.5 70.7

Ours PoseFormer 72.2 70.5 62.8 63.4
WA MixSTE 77.3 78.0 73.5 73.2
SA MixSTE 74.1 74.4 70.2 70.3

Ours MixSTE 70.5 68.2 60.4 61.0

In Tab. 3, we compare our dual-augmentor framework
with single-augmentor frameworks across different 2D pre-
dictions and 2D-to-3D backbones on the generalization for
3D HPE. Here we use MPJPE values on 3DHP [11] for
comparisons. For instance, with GT as 2D predictions
and PoseFormer as the backbone, Ours outperforms SA
by 7.3mm, and it surpasses WA by 11.7mm. The results
highlight the importance of dual-augmentor frameworks
across diverse 2D predictions and backbones, affirming our
method’s robustness and versatility in improving DG for 3D
HPE.

6. Hyperparameter Analysis
In Tabs. 4 through 8, we perform a parameter analysis on
α1, α2, β, γ, and k via the two cross-dataset evaluation
tasks on 3DHP and 3DPW respectively. Notably, consid-
ering the analogous functions of β1 and β2 in serving as
trade-off parameters in the differential discrimination, we

Table 4. Parameter analysis of α1 on 3DHP and 3DPW

3DHP 3DPW
α1 PCK ↑ AUC ↑ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓
0.35 92.2 60.0 63.8 74.5 107.9
0.40 92.7 60.4 63.5 74.1 107.5
0.45 92.9 60.7 63.1 73.5 106.9
0.50 92.9 60.7 63.1 73.2 106.6
0.55 92.9 60.5 63.6 73.8 107.0
0.60 92.5 60.4 63.8 74.0 107.3
0.65 92.1 60.1 63.9 74.4 107.7

Table 5. Parameter analysis of α2 on 3DHP and 3DPW

3DHP 3DPW
α2 PCK ↑ AUC ↑ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓
0.20 92.5 60.2 63.8 74.1 107.5
0.25 92.7 60.5 63.5 73.5 106.9
0.30 92.9 60.7 63.1 73.2 106.6
0.35 92.9 60.7 63.1 73.2 106.6
0.40 92.9 60.7 63.1 73.2 106.6
0.45 92.7 60.4 63.4 73.4 106.8
0.50 92.4 60.0 63.6 73.8 107.0

Table 6. Parameter analysis of β on 3DHP and 3DPW

3DHP 3DPW
β PCK ↑ AUC ↑ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓
1 92.2 60.0 63.6 73.8 107.0
2 92.4 60.2 63.5 73.5 106.9
3 92.7 60.7 63.4 73.4 106.8
4 92.9 60.7 63.1 73.2 106.6
5 92.7 60.4 63.5 73.5 106.9
6 92.5 60.2 63.8 74.1 107.5
7 92.1 60.0 63.9 74.5 107.9

Table 7. Parameter analysis of γ on 3DHP and 3DPW

3DHP 3DPW
γ PCK ↑ AUC ↑ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓

0.7 92.4 60.0 63.8 74.1 107.5
0.8 92.7 60.2 63.8 73.8 107.0
0.9 92.9 60.5 63.3 73.5 106.9
1 92.9 60.7 63.1 73.2 106.6

1.1 92.7 60.7 63.6 73.8 107.0
1.2 92.4 60.5 63.8 74.1 107.5
1.3 92.2 60.0 63.9 74.4 107.7

consolidate them into a single parameter denoted as β in
Tab. 6. These results not only validate the appropriateness
of our parameter choices but also demonstrate the stability



Table 8. Parameter analysis of k on 3DHP and 3DPW

3DHP 3DPW
k PCK ↑ AUC ↑ MPJPE ↓ PA-MPJPE ↓ MPJPE ↓
1 92.9 60.7 63.1 73.2 106.6
4 92.9 60.7 63.1 73.5 107.0
7 92.5 60.4 63.4 73.8 107.3
10 92.2 60.1 63.8 74.3 107.5

of our proposed framework across varying parameter set-
tings.

7. Multi-frame Domain Generalization for 3D
Human Pose Estimation

While our proposed framework is specifically tailored for
single-frame tasks in 3D Human Pose Estimation (HPE),
such as PoseAug [5], CEE-Net [8], and PoseDA [1],
there are alternative approaches that extend their consid-
erations to multi-frame settings through temporal-based
techniques, exemplified by PoseAug-V [14] and DH-AUG
[6]. In this section, we present a comparative analysis of
our method against these temporal-based multi-frame ap-
proaches within the 27-frame setting. Notably, our method
remains consistent with the single-frame setting, except for
variations in input size that contain 27 frames.

Table 9. Cross-dataset evaluation with MPJPE (↓) and PA-MPJPE
(↓) on 3DHP and 3DPW (27-frame).

3DHP 3DPW
Method DG MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

VPose [10] × 96.4 66.5 103.3 63.6
VPose + PoseAug-V [14] ✓ 86.5 61.0 91.1 54.3

VPose + DH-AUG [6] ✓ 80.9 58.6 87.3 52.5
VPose + Ours ✓ 79.7 57.9 85.2 51.6

PoseFormer [16] × 93.3 66.7 118.5 73.4
PoseFormer + PoseAug-V [14] ✓ 82.9 63.1 108.3 64.8

PoseFormer + DH-AUG [6] ✓ 75.4 61.8 104.4 62.1
PoseFormer + Ours ✓ 74.1 61.0 102.7 61.3

In Tab. 9, our single-frame approach demonstrates a sig-
nificant performance advantage over temporal-based meth-
ods like PoseAug-V and DH-AUG, despite being a single-
frame method without relying on temporal-based tech-
niques. This result underscores the effectiveness and su-
periority of our proposed method.

8. Visualizations of Distributions between
Source Data and Synthesized Data

In Fig. 2 and Fig. 3, we present a qualitative visualization
of our augmented data. We utilize S6 from Human3.6M [7]
as the source domain (depicted by red dots in both figures).
Subsequently, we generate 3,000 data points using both the
weak augmentor (depicted by green dots on the left side)
and the strong augmentor (depicted by blue dots on the right
side).

In these two figures, it is evident that data points gener-
ated by the weak augmentor closely resemble the distribu-

(a) (b)

Figure 2. Visualizations of Distributions. Here we choose the right
hip joint in S6 set of Human3.6M for illustration. Red dots in both
figures are the source data’s distributions. Green dots on the left
side are 3K points generated by the weak-augmentor, and blue dots
on the right side are 3K points generated by the strong-augmentor.

(a) (b)

Figure 3. Visualizations of Distributions. Here we choose the right
shoulder joint in S6 set of Human3.6M for illustration. Red dots
in both figures are the source data’s distributions. Green dots on
the left side are 3K points generated by the weak-augmentor, and
blue dots on the right side are 3K points generated by the strong-
augmentor.

tions of the source, whereas those generated by the strong
augmentor exhibit a notable deviation from the source dis-
tributions, thereby demonstrating the effectiveness of these
two augmentors.

9. Visualizations of Weak-augmented and
Strong-augmented Poses

In Fig. 4, we provide several examples to visualize the ef-
fectiveness of our dual-augmentor system.

2D Predictions Original Weak-augmented Strong-augmented

Figure 4. Visualizations of Augmentations.

As depicted in this figure, the poses generated by the



weak augmentor exhibit similarity to the original source
poses. In contrast, poses generated by the strong augmen-
tor differ significantly from the source poses. Nevertheless,
these strong-augmented poses remain reasonable in their re-
spective scenarios and align with the human model.

10. Details of Laplacian Weighted Similarity
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Figure 5. Visualizations of 16-joint Human Body Model.

In Fig. 5, the 16-joint human body model is provided,
which follows the settings of previous works [1, 3, 6, 8, 9,
14]. Based on this model, it is straightforward to obtain the
two matrices, the adjacency matrix A:

A =


0 1 0 0 1 0 0 1 . . .
1 0 1 0 0 0 0 0 . . .
0 1 0 1 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .


16×16

, (1)

and the degree matrix D:

D =


3

2
2

. . .
1


16×16

(2)
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