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The supplementary material contains: 1) adaptable to
different 3D pose estimators; 2) ablation studies on Hu-
man3.6M; 3) more qualitative results.

1. Adaptable to Different 3D Pose Estimators

Implementation Details. In this section, we illustrate in
detail on how our Kinematics Prior Attention (KPA) and
Trajectory Prior Attention (TPA) are applied to different 3D
pose estimators. Our TPA possesses the capability to not
only model joint-to-joint motion trajectory across frames
but also to model pose-to-pose motion trajectory across
frames. Figure 1 shows the joint-to-joint and pose-to-pose
motion trajectory topology. In Figure 1(b), TPA connects
the different poses across consecutive adjacent frames to
build the temporal local topology (pose-to-pose), including
self-connection. Next, we exploit learnable vectors (dot-
ted line) to connect the poses among all neighbouring and
non-neighbouring frames to construct the simulated tem-
poral global topology (pose-to-pose), which is equivalent
to the computation of attention weights among all frames
by the self-attention. Then, the two topologies are inte-
grated together through the combination method identical
to joint motion trajectory topology (Figure 1(a)), result-
ing in the pose motion trajectory topology. The pose mo-
tion trajectory topology (Figure 1(b)) is incorporated into
the stacked TPA (pose) to encode the pose-to-pose features
across frames for these works [2, 3, 7]. On the other hand,
we introduce joint motion trajectory topology (Figure 1(a))
into the stacked TPA (joint) to learn joint-to-joint tempo-
ral information for other works [5, 6]. Figure 2 depicts the
framework overview of our KPA and TPA applied to dif-
ferent 3D pose estimators. For PoseFormer [7], the KPA
and the stacked TPA (pose) are placed ahead of the stacked
spatial transformers and stacked temporal transformers, re-
spectively. The model architecture of StridedTransformer
[2] with our method is similar to PoseFormer [7]. Hence,
we have not depicted it. For MHFormer [3], we employ
the KPA to process the initial 2D pose sequence, gener-
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Figure 1. Overview of different motion trajectory topology. (a)
The temporal local topology (joint-to-joint) plus the simulated
temporal global topology (joint-to-joint) to form the joint motion
trajectory topology. (b) The temporal local topology (pose-to-
pose) plus the simulated temporal global topology (pose-to-pose)
to form the pose motion trajectory topology.

ating Q, K and V vectors for the first spatial transformer.
Then, we utilize three parallel stacked TPA (pose) blocks to
encode the pose-to-pose temporal features for multiple hy-
potheses, respectively. The three outputs from three stacked
TPA (pose) blocks are fed into the next layer. In terms of
STCFormer [5], the KPA and the stacked TPA (joint) blocks
are positioned ahead of the spatial attention and temporal at-
tention in parallel. They yield spatial and temporal Q, K and
V vectors with priori knowledge for the spatial attention and
temporal attention, respectively. For D3DP [4], we employ
two KPA blocks to concurrently process the 2D pose se-
quence and noisy 3D pose sequence, subsequently concate-
nating the output features and feeding them into the spa-
tial transformer. Then, the stacked TPA (joint) blocks are
placed between the spatial transformer and temporal trans-
former. D3DP [4] adopts the MixSTE [6] as the denoiser,
so the model architecture of MixSTE [6] with our method
is similar to D3DP [4].

Enhanced Attention Maps. In this section, we visual-
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Figure 2. The framework overview of our KPA and TPA applied to different 3D pose estimators. The stacked TPA indicate that two TPA
blocks are stacked with a residual connection. In terms of PoseFormer [7] and MHFormer [3], we use the stacked TPA (pose) to model
temporal correlations between poses across frames. In contrast, the stacked TPA (joint) is utilized to encode the temporal features between

joints across frames for STCFormer [5] and D3DP [4].

ize the enhanced attention maps of [3, 5, 7] after applying
our KPA and TPA on Human3.6M, to validate the effec-
tiveness of our method. Figure 3 illustrates enhanced spa-
tial and temporal attention maps from PoseFormer [7], MH-
Former [3] and STCFormer [5], by integrating our KPA and
TPA into their networks. In terms of spatial attention maps,
our KPA enhances attention weights between certain joints
based on human anatomical structures and kinematic rela-
tionships, facilitating the explicit representation of human
body topological relationships in the attention maps. On
the other hand, our TPA enhances the temporal correlations
between adjacent frames based on the motion trajectories
of poses or joints in MHFormer [3] and STCFormer [5]. In
particular, our TPA enhances attention weights between the
frames of central region and other frames in PoseFormer
[7], recognizing the periodic nature of human motion in
videos.

2. Ablation Studies on Human3.6M

Different Numbers of Modules. In this section, we val-
idate the impact of different numbers of KPA and TPA

Table 1. The MPJPE and P-MPJPE comparisons with different
numbers of KPA and TPA blocks in the KTPFormer. The evalua-
tion is performed on Human3.6M with 81 input frames. The best
result in each column is marked in red.

Method Parameters (M) FLOPs (M) | MPJPE (mm) P-MPJPE (mm)
Baseline 33.650 46346 43.1 34.1
KTPFormer (all blocks) 33.673 46412 423 334
KTPFormer (first block) 33.652 46353 41.8 32.6

blocks in the KTPFormer. Table | reports the MPJPE and
P-MPJPE comparisons on Human3.6M dataset. We take
the estimated 2D poses by CPN [1] as input and train these
models under 81 frames. The baseline network utilizes
the stacked spatio-temporal encoders (L = 8) with num-
ber of heads H=8 and feature size C'=512 to predict the
3D pose sequence. In our KTPFormer (first block), we
combine KPA and TPA respectively with vanilla spatial
transformer and temporal transformer, forming Kinematics-
Enhanced Transformer and Trajectory-Enhanced Trans-
former, which are placed at the beginning of the network.
Subsequently, we employ the stacked spatio-temporal en-
coders (L = 7) to encode features. In the KTPFormer (all
blocks), we stack the Kinematics-Enhanced Transformer
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and Trajectory-Enhanced Transformer for L = 8 loops. As
indicated by the results, our KTPFormer (first block) ob-
tains the lowest errors of MPJPE and P-MPJPE, indicating
that KPA and TPA are better suited for processing the ini-
tial 2D pose sequence. Also, the KTPFormer (first block)
can improve the performance more efficiently and has only
a smaller increase in the computational overhead compared
to the KTPFormer (all blocks). The design of KTPFormer
(first block) is more effectively applicable to different 3D
pose estimators.

Different Combination Ways of Topologies. We com-
pare two different ways of combining the local topology
and the simulated global topology. The first combination
has been illustrated in the main text. We apply the first
combination way to our KTPFormer, namely KTPFormer
(average). The second combination is to directly add the
local topology and the simulated global topology to obtain
the kinematics topology or the joint motion trajectory topol-
ogy. The second combination way is also applied to the
KTPFormer, called KTPFormer (add). We train the two
networks using the estimated 2D poses by CPN [1] with
81 frames as input. As shown in Table 2, the KTPFormer
(average) achieves the best results of MPJPE and P-MPJPE.
It suggests that the KTPFormer (average) which ensures the

Table 2. The MPJPE and P-MPJPE comparisons with different
combination ways of topologies in the KPA and TPA. The evalua-
tion is performed on Human3.6M with 81 input frames. The best
result in each column is marked in red.

Method Parameters (M) FLOPs (M) | MPJPE (mm) P-MPJPE (mm)
KTPFormer (add) 33.652 46353 42.1 333
KTPFormer (average) 33.652 46353 41.8 32.6

symmetry of the final topology allows the nodes to learn the
spatial or temporal prior knowledge between them without
being influenced by the direction of node connections.

Free Parameters. We conduct experiments on the KTP-
Former under three free parameters, including the number
of spatio-temporal encoders L, the feature size of trans-
former layers C and the number of heads H, to examine dif-
ferent architectures of KTPFormer. During the experiment,
we alter each free parameter while maintaining a constant
value for the remaining two parameters. Table 3 reports the
comparisons on Human3.6M using the CPN’s 2D pose de-
tection with 81 frames as input. The KTPFormer with L
=7, C =512 and H = 8 achieves the runner-up result of
MPIJPE and the best result of P-MPJPE, and strikes a bal-
ance between regression capacity and computational cost.
Thus, we choose this configuration as the standard version
of KTPFormer.
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Figure 4. Visual comparisons of 3D pose estimation between MixSTE [6] and our KTPFormer on Human3.6M dataset. The green circle

highlights locations where our KTPFormer yields better results.

Table 3. The MPJPE and P-MPJPE of KTPFormer with differ-
ent number of spatio-temporal encoders L, feature size of trans-
former layers C, and the number of heads H in self-attention on
Human3.6M dataset. Red: Best results. Blue: Runner-up results.

L C H | Parameters (M) FLOPs (M) | MPJPE (mm) P-MPJPE (mm)
6 512 4 29.446 40560 422 334
7 512 4 33.652 46353 41.7 33.1
8 512 4 37.857 52145 43.0 33.6
7 25 4 8.437 11625 43.0 33.7
7 512 4 33.652 46353 41.7 33.1
7 1024 4 134.413 185115 425 33.7
7 512 1 33.652 46353 43.0 342
7 512 2 33.652 46353 42.8 33.8
7 512 4 33.652 46353 41.7 33.1
7 512 8 33.652 46353 41.8 32.6
7 512 16 33.652 46353 425 33.4

3. More Qualitative Results

In this section, we present more qualitative results of KTP-
Former. Figure 4 presents visual comparisons of 3D pose
estimation results between our KTPFormer and MixSTE
[6]. The green circle highlights locations where we can
achieve more accurate 3D pose estimations compared to
MixSTE [6]. Furthermore, we collect several in-the-wild
videos as an additional real-world test to validate the gen-
eralization ability of our method. As shown in Figure 5,
our method demonstrates remarkable robustness and accu-
racy across the majority of frames in the wild videos, es-
pecially in challenging scenarios with severe occlusion and
extremely fast movements.
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Figure 5. Some visualisation results of 3D pose estimation by our KTPFormer on in-the-wild videos.



