
Supplementary Material:
Learning Occupancy for Monocular 3D Object Detection

Liang Peng3 Junkai Xu1,3 Haoran Cheng1,3 Zheng Yang3 Xiaopei Wu1

Wei Qian3 Wenxiao Wang2 Boxi Wu2 * Deng Cai1
1State Key Lab of CAD&CG, Zhejiang University

2School of Software Technology, Zhejiang University
3FABU Inc.

{pengliang, xujunkai, haorancheng}@zju.edu.cn

In this supplementary material, we provide more details
and experimental results including more ablations and qual-
itative results and associated discussions. We organize it as
follows:

• Section 1: detailed network architecture.
• Section 2: more ablations and analysis.
• Section 2.1: latency.
• Section 2.2: occupancy learning as auxiliary tasks.
• Section 2.3: ablation on depth estimation.
• Section 2.4: ablation on voxel sizes for occupancy

learning.
• Section 2.5: ablation on sub-networks for occupancy

learning.
• Section 2.6: ablation on tricks.

• Section 3: more qualitative results.
• Section 3.1: KITTI and WaymoOD results.
• Section 3.2: limitations and failure cases.

1. Detailed Network Architecture

In this section, we describe the detailed network architec-
ture in our method.

2D backbone: Assume the input RGB image is I ∈
RWI×HI×3, where WI , HI are the input image resolution.
First, we employ DLA34 [7] to extract features, achieving
different stage features, which have different downsampling
factors. Then we use its upsampling neck to obtain final
backbone features Fimg ∈ RWF×HF×Cb , which are used
for depth estimation, where WF , HF , Cb are feature reso-
lution and channel, respectively. This backbone feature has
a downsampling factor of 4, thus WF = WI

4 , HF = HI

4 .
The feature channel Cb is 64. Following CaDDN [5], we
use LID discretization method and 80 bins for depth es-
timetation. Thus we use a convolution layer (3×3, 1, 64, 81,
where 3 × 3 is the kernel size, 1 is the stride, 64 is the in-

*Corresponding author.

Figure 1. 3D hourglass like sub-network. (3 × 3 × 3, 32, 2)
in the figure denote the convolution kernel size, output channel,
and stride, respectively. The “UpConv3D” in the figure denotes
torch.nn.ConvTranspose3d.

put feature channel and 81 is the output feature channel)
for depth estimation. Please note that the last depth bin is
responsible for predicting the out-of-range depth, thus the
valid depth bin is 80. We obtain category depth distribution
D ∈ RWF×HF×D, where D = 80.

Frustum space: We generate the initial frustum fea-
ture using the same way in CaDDN. To save GPU mem-
ory, we use a convolution layer (3 × 3, 1, 64, 16) to re-

1



duce the backbone feature channel from 64 to 16. By
enforcing outer product between category depth distribu-
tion and the reduced backbone feature, we have Fru1 ∈
RWF×HF×D×C , where C is the reduced feature channel
and WF = WI

4 , HF = HI

4 , D = 80, C = 16. We use
two 3D convolution layers ([3×3×3, 1, 16, 16]∗2,ReLU)
to obtain Fru2 ∈ RWF×HF×D×C . Then we employ a 3D
convolution layer ([3× 3× 3, 1, 16, 1],Sigmoid) to predict
frustum occupancy Ofru ∈ RWF×HF×D×1. Therefore, we
have the enhanced frustum feature Fru3 ∈ RWF×HF×D×C

by combing frustum feature Fru2 and frustum occupancy
Ofru.

3D space: We employ grid sampling operation to trans-
form frustum feature Fru3 into the regular 3D feature
V1 ∈ RX×Y×Z×C , where X,Y, Z are the 3D voxel grid
shape and are decided by pre-defined detection range and
voxel size. Then we use a 3D hourglass like design to
extract 3D features for 3D occupancy prediction. A 3D
convolution ([3 × 3 × 3, 1, 16, 16]) is employed, followed
by a 3D hourglass like sub-network, as shown in Figure
1. We have V2 ∈ RX×Y×Z×C and then conduct 3D oc-
cupancy O3d ∈ RX×Y×Z×1 via a 3D convolution layer
([3 × 3 × 3, 1, 16, 1],Sigmoid) . Finally, we can perform
Hadamard product on 3D occupancy O3d and 3D features
V2 to obtain enhanced 3D feature V3 ∈ RX×Y×Z×C . We
empirically find that the 3D hourglass like sub-network in
frustum occupancy learning is unnecessary. We do not use
3D batch normalization in occupancy learning in both frus-
tum and 3D space, as the features are not fully dense within
the space. Please note that our goal is not to explore 3D net-
work design, but to employ a typical network for occupancy
learning.

Detector module: We follow the same detector module
design in CaDDN. It consists of Voxel collapse (to BEV)
and BEV 3D detection components. We refer the reader to
[2, 5] for more details.

2. More Ablations and Analysis

2.1. Latency

We provide the overall latency of our method in Table 1,
which is tested on a NVIDIA 3080Ti GPU. We can see that
the occupancy learning modules cost most time due to the
3D convolutions. The 2D backbone and detector cost 32 ms
while occupancy learning costs 80 ms. Compared to other
real-time methods (e.g., DEVIANT [1]:40ms, DID-M3D
[4]:40ms), our method is slower. It is a disadvantage of the
proposed method. On the other hand, our method is faster
than many other methods (e.g., DfM [6]:320ms, CaDDN
[5]:630ms). It is worthy noting that the proposed method
performs the best on the 3D detection accuracy among the
above methods. This work currently does not focus on the
runtime optimization, which leaves it to future works.

2D Backbone OL-FS OL-3DS Detector All

22ms 28ms 52ms 10ms 112ms

Table 1. Latency of each component. “OL-FS” in the table refers
to occupancy learning in frustum space and “OL-3DS” in the table
denotes occupancy learning in 3D space.

2.2. Occupancy Learning as Auxiliary Tasks

We also conduct experiments that make occupancy learning
as auxiliary tasks. The results are reported in Table 2. For
the auxiliary task setting, we still perform occupancy learn-
ing, but do not use the occupancy prediction to weight fea-
tures. Occupancy learning also can make the network learn
informative features under this setting, thus largely boosting
the performance. When using the full setting, the method
performs the best.

O-L As auxiliary? APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

N/A 30.32/21.04 24.58/17.05 22.02/15.01
✓ Yes 35.69/26.31 26.47/19.57 23.37/16.93
✓ No 35.72/26.87 26.60/19.96 23.68/17.15

Table 2. Occupancy learning as auxiliary tasks. “O-L” in the table
denotes occupancy learning.

2.3. Ablation on Depth Estimation

In the main text, we describe the relationship between occu-
pancy and depth. We argue that occupancy bases on depth
and beyond it. Good 2D dense depth estimates provide a
good start point for occupancy because directly learning
occupancy in large 3D space is difficult. We perform an
experiment to prove this and report the results in Table 3.
When removing depth estimation, the performance is heav-
ily downgraded. Therefore, we believe that it is a good prac-
tice of combing depth estimation and occupancy learning.

Depth estimation APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

32.13/21.58 23.58/16.13 20.69/13.90
✓ 35.72/26.87 26.60/19.96 23.68/17.15

Table 3. Ablation on depth estimation.

2.4. Ablation on Voxel Sizes for Occupancy Learn-
ing

As discussed in the main text, large voxel sizes reduce the
GPU memory usage and computational overhead but in-
troduce large quantization errors. We illustrate an exam-
ple in Figure 2. Concerning irregular frustum voxels, their
sizes are determined by feature resolutions and associated



Figure 2. Quantization errors. Voxelized 3D occupancy from Li-
DAR points can lead to imperfect representations of the scene, as
well as adverse effects when using ray-tracing to generate occu-
pancy labels. For instance, given LiDAR points pa and pb, with
pa identifying free voxels v0, v1, v2, occupied voxel v3, and un-
known voxels v4, v5, v6. However, pb regards occupied voxel v3
as free voxel due to the intersection of Rayb and v3. This ambigu-
ity is aggravated by larger voxel sizes. To address the ambiguity,
we repeat the step of assigning occupied voxels to ensure that all
voxels containing LiDAR points are marked as occupied.

depth bin ranges, which usually follow conventional set-
tings. Therefore, we mainly investigate the impact of regu-
lar 3D voxel size in 3D space for occupancy learning. We
change the 3D voxel size in occupancy learning while keep-
ing the voxel size the same for the later BEV detection mod-
ule to make fair comparisons. As shown in Table 4, the
performance decreases as voxel size increases, which is ex-
pected. Note that we can only use a minimum voxel size
of 0.16(meter) size because of the GPU (NVIDIA 3080Ti,
12G) memory limitation.

Voxel size GPU memory Runtime APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

None 2.38 GB 32ms 30.32/21.04 24.58/17.05 22.02/15.01
0.643 2.55 GB 70ms 32.68/23.09 24.14/17.07 21.74/14.98
0.323 2.70 GB 87ms 35.45/26.01 26.12/18.77 23.14/16.26
0.163 3.18 GB 112 ms 35.72/26.87 26.60/19.96 23.68/17.15

Table 4. Ablation on regular 3D voxel sizes for occupancy learn-
ing. “0.643” in table denotes the voxel size of 0.64 × 0.64 ×
0.64(meter).

2.5. Ablation on Sub-networks for Occupancy
Learning

This section investigates the impact of different sub-
networks used for occupancy learning. Specifically, we use
two types of sub-network: 1: two 3D convolution layers;
2: 3D hourglass like architectures, where the latter is more
complicated (Figure 1). We employ the two sub-networks
in the occupancy learning module in frustum and 3D space,
respectively. The results are shown in Table 5. We can see
that more deeper and complicated networks benefit the per-
formance. Interestingly, when employing the 3D hourglass
like architecture in both frustum and 3D space, the results
are not the best. Therefore, we empirically use two 3D
convolution layers for frustum occupancy learning and the

OL-FS OL-3DS APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

T-3D T-3D 32.99/23.64 24.52/17.70 22.27/15.62
3D-Hour T-3D 35.95/26.09 25.73/18.97 23.41/16.45

T-3D 3D-Hour 35.72/26.87 26.60/19.96 23.68/17.15
3D-Hour 3D-Hour 35.00/26.28 25.85/19.38 23.37/16.81

Table 5. Ablation on sub-networks for occupancy learning. “OL-
FS” in the table denotes occupancy learning in frustum space;
“OL-3DS” refers to occupancy learning in 3D space. “T-3D”
refers to two 3D convolution layers; “3D-Hour” is the 3D hour-
glass like architecture.

3D hourglass like architecture for 3D occupancy learning.
Given that this work does not aim to explore the network
design, we encourage future works to introduce more deli-
cate networks for this task.

λ
APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

0.1 34.31/25.52 25.85/19.10 23.39/16.95
0.5 34.34/26.42 26.17/19.40 23.30/17.46
1.0 35.72/26.87 26.60/19.96 23.68/17.15
5 35.95/27.57 26.39/19.63 23.34/16.96

10 35.64/27.51 26.20/19.64 23.09/16.95

Table 6. Ablation on λ. λ (in Equation 10 in the main text) is the
occupancy loss weighting factor in the final loss.

2.6. Ablation on Tricks

We perform experiments to see the influence of tricks. More
specifically, we adopt two tricks: pre-trained backbone on
depth estimation from DDAD15M [3] and data augmenta-
tion. The results are provided in the Table 7. Interestingly,
we find that the data augmentation is very important for
this task. The performance drastically decreases when re-
moving data augmentation. We think this gap is caused by
the limited data scale in KITTI and the data diversity fa-
vors our method, and the results in WaymoOD support this
viewpoint. Moreover, the pre-trained depth backbone fur-
ther boosts the performance.

Pre-trained b. Data aug. APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

24.81/16.83 19.16/13.42 17.77/11.86
✓ 28.01/19.72 21.20/14.86 18.83/12.72

✓ 35.20/26.35 25.97/19.17 23.14/16.57
✓ ✓ 35.72/26.87 26.60/19.96 23.68/17.15

Table 7. Ablation on tricks. “Pre-trained b.” in the table denotes
pre-trained backbone on depth estimation from DDAD15M [3];
“Data aug.” is the data augmentation.



3. More Qualitative Results
We visualize occupancy predictions and 3D detections to
better understanding the effectiveness and limitation of our
method.

3.1. KITTI and Waymo Results

We provide some qualitative results on KITTI val set in
Figure 3 and results on WaymoOD (waymo open dataset)
val set in Figure 4. Our method generates good results for
most cases. Considering faraway and some occluded ob-
jects, the proposed method still provides dense and reason-
able 3D occupancy. This characteristic benefits the down-
stream monocular 3D detection task.

3.2. Limitations and Failure Cases

Our method also has some limitations and can fail to deal
with some objects. First, for heavily occluded objects, the
method cannot generate discriminative occupancy for such
objects (please see orange arrows in Figure 3 and Figure 4).
Second, our method is hard to precisely predict the occu-
pancy behind thin objects (e.g., pole, please see cyan arrows
in Figure 4) under the camera perspective. It is because no
LiDAR points are provided in these areas, and the relative
background LiDAR points tend to make the network regard
such invisible regions as occupied. Therefore, we can see
tails behind thin objects (please see cyan arrows in Figure
4).

Additionally, most failure cases stem from poor occu-
pancy estimation, as the accuracy of the final 3D box heav-
ily depends on the occupancy prediction. For instance, if
the occupancy estimate fails to identify an object in certain
areas, the detector is unable to correctly infer its presence.
Specifically, poor occupancy estimation mainly represents
two-folds: firstly, accurate localization but imprecise de-
tails (e.g., for truncated close objects), resulting in 3D boxes
that are close to, but not precisely align with 3D box labels;
secondly, inaccurate localization (e.g., for faraway objects),
directly leading to bad 3D boxes. Occlusion can also con-
tribute to both issues.

References
[1] Abhinav Kumar, Garrick Brazil, Enrique Corona, Armin Par-

chami, and Xiaoming Liu. Deviant: Depth equivariant net-
work for monocular 3d object detection. In European Confer-
ence on Computer Vision (ECCV), 2022. 2

[2] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. PointPillars: Fast encoders
for object detection from point clouds. In CVPR, pages
12697–12705, 2019. 2

[3] Dennis Park, Rares Ambrus, Vitor Guizilini, Jie Li, and
Adrien Gaidon. Is pseudo-lidar needed for monocular 3d ob-
ject detection? In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3142–3152, 2021. 3

[4] Liang Peng, Xiaopei Wu, Zheng Yang, Haifeng Liu, and Deng
Cai. Did-m3d: Decoupling instance depth for monocular 3d
object detection. In European Conference on Computer Vi-
sion, 2022. 2

[5] Cody Reading, Ali Harakeh, Julia Chae, and Steven L Waslan-
der. Categorical depth distribution network for monocular 3d
object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8555–
8564, 2021. 1, 2

[6] Tai Wang, Jiangmiao Pang, and Dahua Lin. Monocular 3d
object detection with depth from motion. arXiv preprint
arXiv:2207.12988, 2022. 2

[7] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Dar-
rell. Deep layer aggregation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2403–2412, 2018. 1



Figure 3. KITTI val results. From left to right: input RGB images; occupancy predictions; 3D box predictions. Red boxes are our results
and Green boxes denote ground-truths. The LiDAR point clouds in 3D detections are used only for visualization. Orange arrows refer to
failure cases caused by heavy occlusions. Best viewed in color with zoom in.



Figure 4. WaymoOD val results. From left to right: input RGB images; occupancy predictions; 3D box predictions. Red boxes are our
results and Green boxes denote ground-truths. The LiDAR point clouds in 3D detections are used only for visualization. Orange arrows
refer to failure cases caused by heavy occlusions and cyan arrows denote failure cases caused by thin objects. Best viewed in color.


	. Detailed Network Architecture
	. More Ablations and Analysis
	. Latency
	. Occupancy Learning as Auxiliary Tasks
	. Ablation on Depth Estimation
	. Ablation on Voxel Sizes for Occupancy Learning
	. Ablation on Sub-networks for Occupancy Learning
	. Ablation on Tricks

	. More Qualitative Results
	. KITTI and Waymo Results
	. Limitations and Failure Cases


