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A. Theoretical Analysis
Formally, we consider a source network fs : Xs → Ys

trained on source domain Ds = {(xs, ys)||xs ∼ Ps
X , ys ∼

Ps
Y}, a target network ft : Xt → Yt, and target domain

Dt = {(xt, yt)||xt ∼ Pt
X , yt ∼ Pt

Y}. PX and PY are
the distribution of X and Y , respectively. The goal of IP
protection is to fine-tune ft while minimizing the general-
ization region of ft on target domain Dt, in other words, de-
grade the performance of ft on unauthorized target domain
Dt while preserving performance on authorized source Ds.

A.1. Definitions

Proposition 1 ([8]). Let n be a nuisance for input x. Let
z be a representation of x, and the label is y. The Shan-
non Mutual Information (SMI) is presented as I(·). For the
information flow in representation learning, we have

I(z;x)− I(z; y|n) ≥ I(z;n) (1)

Lemma 1 ([8]). Let p be the predicted label outputted by
a representation model when feeding with input x, and sup-
pose that p is a scalar random variable and x is balanced
on the ground truth label y. And P(·) is the distribution.
If the KL divergence loss KL(P(p)∥P(y)) increases, the
mutual information I(z; y) will decrease.

A.2. Details of Optimization Objective Design

In the context of intellectual property (IP) protection,
the objective is to maximize I(z;n) on the unauthorized
domain, and Proposition 1 provides guidance by aiming
to minimize I(z; y|n). According to Lemma 1, if the
Kullback-Leibler (KL) divergence loss KL(P(p)∥P(y))
increases, the mutual information I(z; y) will decrease.
Since I(z; y|n) = I(z; y)− I(z;n), the I(z; y|n) will con-
sistently decrease with I(z; y). Please note that Proposi-
tion 1 and Lemma 1 have been proved in [8]. Therefore,
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Figure 1. The total architecture of SA-MAP. A well-trained orig-
inal source network fs distills knowledge into the target network
ft, which shares the same architecture. We initialize and fix them
with the same checkpoint, then update a Learnable Binary Mask
(M ) with consistency loss calculated from synthetic samples. The
MAP limits a target domain generalization region while retaining
source domain performance, leading to a beneficial outcome.

the LO in Eq. 2, LSA, and LSF in the main paper are de-
signed in the form of L1 + L2, where L1 = KL(ps∥ys)
and L2 = −KL(pt∥yt). This design allows us to maximize
I(z;n) on the unauthorized (target) domain and minimize
I(z;n) on the authorized (source) domain.

B. Details of MAP Architecture

As elaborated in the main text, we present the compre-
hensive architectural depiction of DF-MAP. In this supple-
mentary, Fig. 1 and Fig. 2 showcase the exhaustive architec-
tures of SA-MAP and SF-MAP, respectively. In the source-
available scenario, access is available to labeled source sam-
ples {xi

s, y
i
s}

Ns
i=1 and target samples {xi

t, y
i
t}

Nt
i=1. We desig-

nate the source domain as the authorized domain, anticipat-
ing good performance, and the target domain as the unau-
thorized domain, expecting the opposite. As depicted in
Fig. 1, the classification example illustrates that the secure
network should correctly classify results on the authorized
domain while producing erroneous results on unauthorized
ones. We iteratively update a binary mask M(θM ) for the
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Figure 2. The total architecture of SF-MAP. (a) The Source Generator, displayed in the left part, consists of two generators. The Fresh
Generator (Gf ) generates synthetic novel featured samples, while Memory Generator (Gm) replays samples with features from previous
images. (b) The right part illustrates the mask-pruning process. A well-trained original source network fs distills knowledge into the target
network ft, which shares the same architecture. We initialize and fix them with the same checkpoint, then update a Learnable Binary Mask
(M ) with consistency loss from synthetic samples. The MAP limits the target generalization region, leading to a beneficial outcome.

Source free setting: source(left) -> target(right)

Right: loss1_loss2, ablation: threshold =-0.032, /home/user3/model/Anti-DA/results/ts_digit_mask_SF/2023-10-18_200, /home/user3/model/Anti-
DA/results/ts_cifar_stl/2023-10-18_200 
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Figure 3. The accuracy (%) of SF-MAP with different losses on the target domain of MT → US, CIFAR10 → STL10, and VisDA-2017 (T
→ V). The left sub-figure is the performance of the source domain, and the right is the performance of the target domain. The light green
bar, blue bar, yellow bar, and the dark green bar present the accuracy of origin model, the accuracy of L1-trained model, the accuracy of
L2-trained model, and the accuracy of LSF -trained model, respectively.

insecure model to prune redundant parameters, which con-
tributes to the generalization to unauthorized domains.

In the preceding discussion, ft represents the target net-
work, and fs represents the source network, both sharing
the same architecture and well-trained weight initialization.
In the right part of Fig. 1, the pruned source network fs
can be regarded as a sub-network, aligning with our In-
verse Transfer Parameter Hypothesis outlined in the main
paper. More precisely, we gradually update M(θM ) to
prune redundant target-featured parameters of ft, enabling
the pruned ft to progressively approximate the sub-network
of fs. The complete source network fs is employed in the
Generation Module in Fig. 2 to generate the source-style
samples.

We further explore the SF-MAP architecture for the
source-free model IP protection task, as illustrated in Fig. 2.

In the source-free scenario, access is limited to unlabeled
target samples {xi

t}
Nt
i=1 and the well-trained weights (θs)

of fs trained on the source domain Ds. Consequently, we
generate pseudo source domain samples {xi′

s , y
i′
s }

N ′
s

i=1 and
pseudo labels {yipsd}

Nt
i=1 for the target domain, as afore-

mentioned. Please note that we are trying to improve the
quality of ypsd, rather than creating a uniform distribution
label space for the target domain. Because we want to pre-
cisely increase I(z, n) on the target domain, the latter will
have a negative influence on the feature z on other domains
or even the source domain. Overall, the ypsd and Genera-
tion Module in Fig. 2 play a pivotal component within SF-
MAP, particularly considering the challenge of synthesizing
source-featured samples with only fs and θs.



C. Details of Experiments
C.1. Details of Datasets

We implemented our methods and baseline on seven
popular benchmarks widely used in domain adaptation
and domain generalization. The digit benchmarks include
MNIST [2], USPS [4], SVHN [6], and MNIST-M [3].
These benchmarks aim to classify each digit into one of
ten classes (0-9). MNIST consists of 28x28 pixel grayscale
images of handwritten digits, with a training set of 60,000
examples and a test set of 10,000 examples. USPS is a
dataset scanned from envelopes, comprising 9,298 16x16
pixel grayscale samples. SVHN contains 600,000 32x32
RGB images of printed digits cropped from pictures of
house number plates. MNIST-M is created by combin-
ing the MNIST with randomly drawn color photos from
the BSDS500 [10] dataset as a background, consisting of
59,001 training images and 90,001 test images.

Additionally, we employed CIFAR10 [5], STL10 [1],
and VisDA2017 [7] for image classification tasks. CI-
FAR10 is a subset of the Tiny Images dataset, featuring
60,000 32x32 color images with 10 object classes. STL-
10 is an image dataset processed from ImageNet, compris-
ing 13,000 96x96 pixel RGB images with 10 object classes.
VisDA2017 is a simulation-to-real dataset for domain adap-
tation, containing 12 categories and over 280,000 images.

C.2. Details of SA-MAP result

Due to space constraints in the main paper, only a portion
of the SA-MAP results are presented. In this supplementary
section, we provide the detailed results in Table 1. The de-
tailed version primarily includes the drop rate for each ex-
periment group. The results of MAP in the source-available
setting exhibit better performance. The true advantage of
SA-MAP lies in the elimination of the need for retraining
from scratch. The obtained sub-network effectively demon-
strates our Inverse Transfer Parameter Hypothesis.

C.3. Details of Data-Free Model IP Protection

We provide the Algorithm 1 in the main paper. The op-
timization procedure adheres to the gradient as it represents
the most effective path towards achieving the specified ob-
jective. In this particular instance, all produced domains
exhibit alignment with a consistent gradient direction [8].
To introduce diversity in directional perspectives within the
generated domains, we impose constraints on the gradient.
Specifically, we decompose the generator network Gd into
ndir segments. To restrict the direction indexed by i, we
employ a freezing strategy by fixing the initial i parameters
of convolutional layers. This approach entails the immo-
bilization of the gradient with respect to the convolutional
layer parameters during training, thereby constraining the
model’s learning capacity along that particular direction.

Algorithm 1 Diversity Neighborhood Domains Generation

Require: The input samples X and label Y diversity gen-
erator network Gd(x; θµ, θσ), direction number ndir,
neighborhood samples Xnbh = [ ]

1: while not converged do
2: for d in ndir do
3: Generate sample xg = Gd(x)
4: Freeze the first d parts of Gd’s each layers
5: Build MI loss LMI of xg and x as Eq. (??)
6: Build semantic loss Lsem of xg , x as Eq. (??)
7: Update θµ and θσ by LMI + Lsem

8: end for
9: Append xg to Xnbh

10: end while
11: return Neighborhood samples Xnbh

C.4. Details of Ownership Verification

We adopt the method from [8] to introduce a model wa-
termark to the source domain data, creating a new auxil-
iary domain Da = {(xa, ya)||xa ∼ Pa

X , ya ∼ Pa
Y}. In

this experiment, we utilize the watermarked auxiliary sam-
ples {xi

a, y
i
a}

Na
i=1 as the unauthorized samples, exhibiting

poor performance when evaluated by model ft. The orig-
inal source samples {xi

s, y
i
s}

Ns
i=1 without watermarks rep-

resent the authorized samples, intended to yield good per-
formance. The details of the ownership verification experi-
ments are outlined in Algorithm 2.

LO(ft;Xs,Ys,Xa,Ya) =
1

Ns

Ns∑
i=1

KL(pSt ∥ys)

−min{λ · 1

Na

Na∑
i=1

KL(pAt ∥ya), γ}

(2)

where KL(·) presents the Kullback-Leibler divergence.
pSt = ft(xs) and pAt = ft(xa) mean the prediction of target
model ft. λ means a scaling factor and γ means an upper
bound. We set λ = 0.1 and γ = 1

The detailed results in Table 2 reveal that the original
model in supervised learning (SL) struggles to differentiate
between the source domain Ds and the watermarked autho-
rized domain Da, achieving similar results on both. In con-
trast, established model intellectual property (IP) protection
methods such as NTL [8], CUTI [9], and our SA-MAP ex-
hibit distinct advantages. These methods showcase superior
performance on Ds compared to Da. Particularly notewor-
thy is the performance of SA-MAP, which outperforms the
other methods, showcasing a 1.9% improvement over the
second-best approach.

C.5. Details of Ablation Study
The detailed ablation figure, highlighting various loss

functions, is depicted in Fig. 3. As stated before, the model



Model Source/Target MT US SN MM Source Drop↓ Target Drop↑ ST-D↓

NTL

MT 98.9 / 97.4 96.3 / 14.0 36.3 / 19.0 64.9 / 11.2 1.5 (1.5%) 50.9 (77.6%) 0.019
US 90.0 / 10.8 99.7 / 99.9 32.8 / 7.1 42.5 / 8.5 -0.2 (-0.2%) 46.3 (84.0%) -0.024
SN 68.4 / 9.0 74.9 / 8.1 91.9 / 91.1 32.8 / 9.0 0.8 (0.9%) 50.0 (85.2%) 0.011
MM 97.6 / 11.3 88.2 / 16.4 40.1 / 19.2 96.8 / 95.1 2.0 (2.1%) 59.7 (79.2%) 0.027

Mean / / / / 1.0 (1.1%) 51.7 (81.5%) 0.013

CUTI

MT 98.9 / 98.9 96.3 / 7.8 36.3 / 19.1 64.9 / 12.7 0 (0%) 52.7 (80.0%) 0
US 90.0 / 16.7 99.7 / 99.8 32.8 / 10.1 42.5 / 8.5 -0.1 (-0.1%) 42.3 (78.6%) -0.013
SN 68.4 / 9.3 74.9 / 12.6 91.9 / 91.6 32.8 / 9.2 0.3 (0.3%) 48.3 (82.3%) 0.036
MM 97.6 / 11.6 88.2 / 14.1 40.1 / 19.8 97.1/96.3 0.8 (0.8%) 60.1 (80.0%) 0.010

Mean / / / / 0.3 (0.3%) 50.9 (80.2%) 0.004

MAP
(ours)

MT 98.9 / 99.0 96.3 / 14.3 36.3 / 18.9 64.9 / 10.7 -0.1 (-0.1%) 51.0 (77.8%) -0.013
US 90.0 / 11.0 99.7 / 99.7 32.8 / 7.8 42.5 / 10.8 0 (0%) 45.2 (82.1%) 0
SN 68.4 / 9.5 74.9 / 8.5 91.9 / 92.7 32.8 / 9.4 -0.8 (-0.9%) 49.6 (84.4%) -0.012
MM 97.6 / 11.2 88.2 / 14.3 40.1 / 19.3 97.1 / 97.2 -0.1 (-0.1%) 60.4 (80.2%) -0.012

Mean / / / / -0.3 (-0.3%) 51.6 (81.1%) -0.004

Table 1. Results of SA-MAP in source-available situation. In the table, MNIST, USPS, SVHN, and MNIST-M datasets are abbreviated
as MN, US, SN, and MM, separately. The left of ’/’ represents the accuracy of the model trained on the source domain with SL, and
the right of ’/’ means the accuracy of NTL, CUTI, and MAP, which are trained on the SL setting. The ’Source/Target Drop’ means the
average degradation (relative degradation) of the above models. The ’↓’ means a smaller number gives a better result, and the ’↑’ means the
opposite. The data of the NTL and CUTI are obtained by their open-source code. Finally, we bold the number with the best performance.

Source Methods Avg Drop

SL NTL CUTI MAP SL NTL CUTI MAP

MT 99.2 / 99.4 11.2 / 99.1 11.4 / 99.1 9.7 / 98.3 0.2 87.9 87.7 88.6
US 99.5 / 99.6 14.0 / 99.7 6.8 / 99.8 6.8 / 99.3 0.1 85.7 93.0 92.5
SN 91.1 / 90.3 24.0 / 90.4 43.5 / 90.4 34.8 / 82.3 -0.8 66.4 46.9 47.5
MM 92.1 / 96.5 12.8 / 96.7 17.1 / 96.7 16.7 / 95.9 4.4 83.9 79.6 79.2

CIFAR 85.7 / 85.7 56.8 / 84.2 45.3 / 83.7 23.5 / 79.7 0 27.4 38.4 56.2
STL 93.2 / 86.5 26.4 / 81.2 22.7 / 84.7 22.1 / 82.2 -6.7 54.8 62.0 60.1

VisDA 92.4 / 92.5 93.1 / 93.2 73.8 / 92.9 70.6 / 89.7 0.1 0.1 22.4 19.1

Mean / / / / -0.3 58.0 61.4 63.3

Table 2. Ownership verification. The left of ’/’ denotes NTL, CUTI, and MAP’s results on watermarked auxiliary domains, while the right
on source domains. The average drop (Avg Drop) presents the drop between source domains and auxiliary domains, the higher, the better.

Algorithm 2 Ownership Verification with MAP

Require: The source dataset Xs, target model ft(x; θt),
pre-trained model parameters θ0, mask M(θM ).

1: Initialize θt with θ0 and fix θt
2: while not converged do
3: Add watermark to xs to build xa as [8].
4: Update θM by xs and xa as Eq. (2)
5: end while
6: return Learned mask parameters θM

trained with LSF demonstrates superior performance on
both the source and target domains. In the case of L1, the
outcome closely resembles that of the original model, in-
dicating a lack of effective model intellectual property (IP)
protection. On the other hand, with L2, although there is a
reduction in accuracy on the target domain, there is a note-
worthy decline on the source domain, signifying a failure to

adequately preserve the source performance.
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