PAPR in Motion: Seamless Point-level 3D Scene Interpolation

Supplementary Material

A. Video Results

Please visit our project website for the video results, where
we include animations of our method and comparisons to
the baseline.

B. Sensitivity Analysis

We perform a sensitivity analysis to evaluate our model’s
performance in relation to its hyperparameters. Specifically,
we focused on examining the impact of varying the number
of nearest neighbours, denoted as k, used in the regulariza-
tion techniques. Figure 5 illustrates the findings from our
analysis of k’s influence. As shown, higher values of k£ gen-
erally lead to increased rigidity in the moving parts of ob-
jects. This heightened rigidity contributes to more accurate
interpolations, as observed in the improved preservation of
surface smoothness and structural integrity, particularly no-
ticeable in the butterfly’s wing during its motion.

However, it is important to note that as k increases, it
imposes more constraints on object movements due to the
larger neighbourhood size considered. This can be a limit-
ing factor, particularly in scenes with intricate geometries,
where an excessively high k£ value might overly restrict
movement and hinder the parts from interpolating correctly.
In practice, we choose a value of k that strikes a balance be-
tween maintaining structural rigidity and allowing sufficient
flexibility for part movement.

We also show the effect of varying the interval m for
the local displacement averaging step (LDAS). As shown
in Figure 6, too small a value of m may slow down the
geometry adaptation process. In practice, we choose a value
of m = 100 that best balances the adaptation speed and the
quality of the intermediate renderings.

C. Implementation Details

Dataset Details We use multi-view RGB images from
both the start and end states of each scene as our input data.
The training set for each scene consists of 100 randomly
selected views from the upper hemisphere for each state,
while the evaluation set comprises 200 unseen test views.
In synthetic scenes, all images are rendered at a resolution
of 800 x 800 pixels. The real-world tablet stand scene is
rendered at a resolution of 1008 x 756 pixels, and the lamp
scene at 960 x 540 pixels.

Training Details The duration of the intermediate scene
interpolation process in our method takes 16 epochs. To
enhance efficiency, we found that finetuning the model on
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Figure 5. Sensitivity analysis on the effect of k, the number of
nearest neighbour used in regularization calculations. The results
show that larger values of k tend to increase the rigidity of moving
parts while smaller values of k result in more flexible part move-
ments. In this example, k£ = 300 exhibits the best surface continu-
ity and smoothness throughout the interpolation process.

target images downsampled by a factor of two is sufficient.
This results in a training time of approximately an hour on a
single NVIDIA A100 GPU. The end state appearance fine-
tuning takes 16 epochs. We choose the number of nearest
neighbours k for each scene based on how rigid the object
should be — the more rigid it is, the higher the value of k.
The specific values of k for each scene are detailed in Ta-
ble 2.

For the baseline method, Dynamic Gaussian [24], their
original approach involves finetuning for 75 epochs at each
subsequent time step after the initial one. To better accom-
modate larger scene changes in our context, we extend this
significantly to 300 epochs.

D. Additional Results

Figure 7 and 8 shows additional qualitative comparisons be-
tween our method, PAPR in Motion, and Dynamic Gaus-
sian [24]. The results show that Dynamic Gaussian [24]
struggles with maintaining object geometry integrity during
the interpolation process. For instance, in the Lego Bull-
dozer scene, points on the arm notably drift, and points


https://niopeng.github.io/PAPR-in-Motion/
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Table 2. Different values of nearest neighbour & for each scene.
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Figure 6. Sensitivity analysis on the effect of m, the interval size
in terms of number of iterations to apply local displacement aver-
aging step (LDAS).

from the back of the cabin erroneously travel to the front.
Similarly, in the giraffe scene, a portion of the points on
the giraffe’s neck and legs do not move cohesively, lead-
ing to disjointed transitions. In scenes with drastic changes
like the butterfly and crab scenes, the baseline fails to pre-
serve the original appearance. In contrast, PAPR in Motion
successfully handles these challenging scenarios, producing
smooth and natural interpolations between states.
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Figure 7. Qualitative comparison of 3D scene interpolation from start to end state using synthetic scenes. Both methods start by training a
static model for the start state and subsequently finetune it towards the end state, all without any intermediate supervision. As shown, our
PAPR in Motion method generates more plausible interpolation between states.
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Figure 8. Qualitative comparison of 3D scene interpolation from start to end state using synthetic scenes. Both methods start by training
a static model for the start state and subsequently finetune it towards the end state, all without any intermediate supervision. Dynamic
Gaussian [24] fails to handle scene changes with large displacements, as shown by the butterfly example where the wings disappear, and
in the crab scene, where the claw’s geometry distorts during transition and fails to retain appearance details on the crab’s shell. In contrast,
PAPR in Motion produces smooth interpolations between states.
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