
Scene Adaptive Sparse Transformer for Event-based Object Detection

Yansong Peng1 Hebei Li1 Yueyi Zhang1 Xiaoyan Sun1,2 Feng Wu1,2

1University of Science and Technology of China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

{pengyansong, lihebei}@mail.ustc.edu.cn, {zhyuey, sunxiaoyan, fengwu}@ustc.edu.cn

1. Video Detection & Sparsification Results
In the accompanying multimedia file, titled video.mp4,
we present visualizations corresponding to several event
clips in the test set of 1Mpx. This video includes com-
parisons between ground truth and SAST’s object detection
results, showcasing SAST’s high performance. It also fea-
tures the visualizations of score heatmaps and selection re-
sults across different scenes, providing a clear demonstra-
tion of SAST’s scene-aware adaptability. From the video,
it can be observed that SAST assigns higher scores to im-
portant tokens within important windows and performs a
series of operations such as self-attention, MLP, and nor-
malization exclusively on these sparse tokens, significantly
reducing computational costs.

2. Additional Experiments
2.1. Sparsity Level of SAST.

We adjust the hyper-parameters a and b to limit the spar-
sification of SAST and SAST-CB, resulting in 10 sparsity
levels. The performance of 20 networks is illustrated in
Fig. 1. SAST and SAST-CB respectively excel at sparser
and denser sparsity levels, but both achieve the best re-
sults at a moderate sparsity level. We interpret these results
from an information perspective, where higher information
density (more effective interactions among fewer tokens)
has been shown to benefit the Transformers [2]. SAST-
CB achieves this by broadcasting information among se-
lected tokens, enhancing effective information interactions
within a reduced token set. However, an overly sparse net-
work can lead to information loss due to excessive compres-
sion. Therefore, the choice between SAST and SAST-CB
depends on the specific requirements of the task at hand:
SAST for lower computational load and SAST-CB for en-
hanced detection at a slightly higher computational cost.

2.2. Weighting Method Ablation.

In Tab. 1, we conduct a comparative analysis of various
functions used in the STP weighting process for transitive
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Figure 1. Setting different hyper-parameters results in different
sparsity levels and performance of SAST and SAST-CB on 1Mpx.
Performance does not continuously improve with increasing spar-
sity levels. SAST and SAST-CB each have their advantages in
sparser and denser settings.

1Mpx Gen1
Functions mAP (%) A-FLOPs (G) mAP (%) A-FLOPs (G)
Identity 46.5 2.3 46.1 1.2
SoftMax 40.9 1.5 42.0 0.7
Tanh 47.0 1.7 46.7 0.8
Sigmoid 48.3 1.8 47.9 0.8

Table 1. Detection performance on 1Mpx and Gen1 using different
weighting functions. Sigmoid achieves the optimal results.

derivatives. The Sigmoid function, which smoothly maps
scores to weights within the range of 0 to 1, assigning higher
weights to more significant tokens, delivers superior perfor-
mance on both datasets.

2.3. Bigger Model, Bigger Gain.

We scale up the RVT and SAST by increasing the layer
count in the first, second, and fourth blocks by a factor of
two and in the third block by a factor of six, producing the
larger RVT-L and SAST-L variants. As depicted in Tab. 2,
training these larger models on the 1Mpx and Gen1 datasets
both result in performance gains. However, for RVT-L, the
proportion of A-FLOPs within the total FLOPs significantly
increases, which echoes the discussions of model scalabil-
ity in the section Introduction. At a comparable model
size, SAST-L exhibits more pronounced benefits from its



1Mpx Gen1
Methods Backbone mAP (%) FLOPs (G) mAP (%) FLOPs (G) Params (M)
RVT-L [1] MaxViT-L [3] 47.8 23.2 (19.3) 47.6 7.8 (6.6) 33.2
Ours SAST-L 49.2 (+1.4) 7.5 (3.7, -81%) 48.6 (+1.0) 2.9 (1.7, -74%) 33.6

Table 2. Detection performance on 1Mpx and Gen1 by training larger variants of RVT and SAST.

adaptive sparsification. It achieves an impressive mAP of
49.2% on 1Mpx and 48.6% on Gen1 datasets, with even
fewer FLOPs than the pre-scaled RVT-B. This fully demon-
strates the potential of our proposed sparsification method
in achieving a remarkable balance between performance
and computational cost for large models.

3. Additional Visualizations
We extend our visualization analysis to the 1Mpx and Gen1
datasets, as shown in Fig. 2 and Fig. 3. These visualiza-
tions encompass the original event data, score heatmaps,
and the selection results of the windows and tokens. The
supplementary visualizations reinforce our findings from
the main text, providing further evidence of the network’s
scene-aware adaptability in assigning higher scores to im-
portant tokens and adjusting sparsity levels in response to
the scene complexity.

4. Additional Implementation Details.
In Tab. 3, we list the default choices of key hyper-
parameters, facilitating the replication of our study. These
parameters are shared for both the 1Mpx and Gen1 datasets.

a b p Batch Size Steps Learning Rate
0.0002 0.099 1.0 32 600000 0.00056

Table 3. Default hyper-parameters used for training SAST and
SAST-CB on 1Mpx and Gen1.
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Figure 2. Additional Visualizations of original events, score heatmaps, and selection results under four scenes in Gen1. As the network
progresses through subsequent SAST blocks, featuring multiple downsampling stages, the scale (receptive field) of tokens expands.
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Figure 3. Additional Visualizations of original events, score heatmaps, and selection results under four scenes in 1Mpx. As the network
progresses through subsequent SAST blocks, featuring multiple downsampling stages, the scale (receptive field) of tokens expands.


