
Supplementary Material for TransLoc4D: Transformer-based 4D Radar
Place Recognition

Due to the space limitations of the manuscript, in this
supplementary material, we provide additional details
and experiments to support our proposed approach.

1. Descriptions on the Employed 4D Radars

The NTU4DRadLM [11] dataset is collected by an
Oculii EAGLE 4D Imaging Radar, which is a 2-chip
hardware platform. Each chip is automotive-grade radar
that has 6 transmitting antennas and 8 receiving anten-
nas (6T8R). Based on Oculii’s proprietary AI-powered
Virtual Aperture Imaging technology, a 50X increase in
angular resolution is enabled. The Oculii EAGLE 4D
radar works in the frequency band between 77-79 GHz,
and can output a frame of point cloud with about 4000
points every 50ms.

In SJTU4D dataset [7], ZF FRGen21 4D Radar is
used. It has 12 transmitting antennas and 16 receiving
antennas (12T16R) to generate a total of 192 channels. It
works in the frequency band from 76 GHz to 77 GHz. A
frame of point cloud including about 400 to 1400 points
can be obtained every 60ms.

The detailed specifications of the two radars em-
ployed in NTU4DPR and SJTU4DPR are presented in
Tab. 1. Compared with 3D LiDAR, 4D radar has a
limited Field-Of-View (FOV) and a limited number of
points per frame. These bring greater challenges to the
place recognition task based on 4D radar.

Table 1. Specifications of the two types of 4D radar employed.

Field Resolution Accuracy

Oculii Eagle

Range 0∼400m ≤0.86m ≤0.16m
Azimuth -56.5°∼56.5° 0.5° 0.44°
Elevation -22.5°∼22.5° 1.0° 0.175°
Velocity -86.8∼86.8 m/s 0.27 m/s 0.09 m/s

Frenquency 77-79GHz - -
Framerate 15Hz - -

Points/frame around 4000 - -

ZF FRGen21

Range 0∼350m ≤0.2m ≤0.02m
Azimuth -75°∼75° 1.5° 0.15°
Elevation -15°∼15° 1.5° 0.3°
Velocity -40∼40 m/s 0.1 m/s 0.01 m/s

Frenquency 76-77GHz - -
Framerate 16Hz - -

Points/frame 400∼1400 - -

2. More Details on the Proposed Datasets
2.1. Expanded Test Sets of NTU4DPR

Given that the NTU4DRadLM dataset (from which
the NTU4DPR is generated) only comprises data gath-
ered during sunny daytime, we expand the NTU4DPR
with additional trajectories collected under different
weather conditions, to validate 4DRPR and our pro-
posed method across diverse environments. Specifically,
two additional subsets are collected at Nanyang Techno-
logical University (NTU), in the Sports and Recreation
Center (SRC) and at Nanyang Link (NYL). Depicted in
Fig. 1, the path within SRC spans approximately 1.1 km,
while the route in NYL is over 1 km.

The two new subsets, namely NTU4DPR-NYL and
NTU4DPR-SRC, are collected on sidewalks instead of
main roads. Characterized by similar and repetitive
structures, sidewalk scenes pose a challenge for place
recognition. Noticeably, data collection spans various
periods, including day and night, and extends to a range
of weather conditions, from sunny days to light and
moderate rainfall. NTU4DPR-NYL contains three tra-
jectories along a repeated route in NYL on cloudy, night,
and rainy days respectively. The nighttime and rainy tra-
jectories are sampled as two query splits, NYL-Night
and NYL-Rain. The remaining split collected during
cloudy daytime is sampled as the database. Similarly,
the NTU4DPR-SRC contains two repeated trajectories
of SRC collected during daytime and nighttime. They
are sampled as the query split SRC-Night and the corre-
sponding database respectively. As expanded test sets of
NTU4DPR, NYL-Night, NYL-Rain, and SRC-Night are
used as challenging queries to evaluate the cross-domain
robustness of the comparative models. The statistics of
each new data split can refer to Tab. 1 in the main text.

2.2. Datasets Statistics

The statistics of the proposed 4DRPR datasets, sum-
marized in Tab. 2, provide the distribution of point-based
measurements within each dataset. The ‘Min Points’
represents the minimal number of points recorded in a
frame across all samples in the subset. The ‘Max Points’
reflects the maximal number of points, and the ‘Mean



Table 2. Summary of Dataset Statistics with Database and Query Subsets

Dataset Subset Min Points Max Points Mean Points Std Dev Points Min Velocity Max Velocity Min Intensity Max Intensity

NTU-Train Database 1067 6824 3388.91 976.72 −27.06 11.99 0.00 33.87
Query 692 6099 3203.90 954.29 −34.20 14.65 0.00 33.20

NTU-Test Database 491 9120 3603.99 1610.18 −28.95 29.04 0.00 35.34
Query 848 8830 3610.02 1437.11 −28.42 17.40 0.00 34.48

NYL-Night Database 710 7876 3994.43 1259.63 −18.50 23.84 0.00 42.05
Query 1154 7904 4120.79 1306.73 −12.49 17.45 0.00 41.79

NYL-Rain Database 710 7876 3994.43 1259.63 −18.50 23.84 0.00 42.05
Query 392 6631 3179.70 1245.04 −18.20 23.98 0.00 40.60

SRC-Night Database 821 8081 4886.37 1522.73 −10.70 17.58 0.00 42.21
Query 867 8122 5124.07 1430.19 −9.86 8.79 0.00 40.97

SJTU-TestA Database 638 1606 1132.22 172.33 −26.42 26.41 50.00 121.80
Query 392 1515 1066.90 157.73 −26.44 26.42 50.00 122.37

SJTU-TestB Database 378 1613 1084.05 218.58 −26.43 26.43 50.00 121.79
Query 145 1543 1087.45 227.13 −26.44 26.43 50.00 134.76

(a) NYL dataset

(b) SRC dataset

Figure 1. Satellite views of NTU4DPR-SRC and NTU4DPR-
NYL

.

Points’ indicates the average number of points across all
samples in the subset. The NTU4DPR and SJTU4DPR

Table 3. The comparisons of taking the original relative radial
velocity (-Vd) and the proposed relative azimuth angle (-V) as
the model input.

Method
NTU4DPR-Test SJTU4DPR-TestA

r@1 r@5 r@10 r@1 r@5 r@10
TransLoc4D-R 92.7 94.5 95.1 88.6 93.2 94.0
TransLoc4D-R-Vd 94.7 95.7 96.2 55.4 64.2 67.3
TransLoc4D-R-V 94.3 95.9 96.5 89.5 93.2 94.1
TransLoc4D-R-VI 95.5 96.3 96.6 89.0 92.4 93.3

Method
NYL-Rain SRC-Night

r@1 r@5 r@10 r@1 r@5 r@10
TransLoc4D-R 81.0 88.4 91.5 89.0 94.5 96.4
TransLoc4D-R-Vd 68.8 81.0 85.9 68.4 82.1 87.3
TransLoc4D-R-V 83.3 89.5 93.4 93.6 97.3 98.3
TransLoc4D-R-VI 82.5 89.7 92.1 94.4 96.9 97.9

were captured using different radars, which can be
evidenced by the stark differences in statistics. For
instance, the SJTU-TestB exhibits significantly fewer
mean points (1084.05) than the SRC-Night (5124.07),
which poses challenges in cross-dataset generalization
due to the disparity in point density and distribution. Ad-
ditionally, the SJTU subsets have a higher minimum in-
tensity of 50.00 when compared to the other NTU sub-
sets with a minimum intensity of 0.0. These discrep-
ancies imply the necessity of handling source-specific
characteristics when developing models that generalize
well across different datasets. Therefore, in our exper-
iments, intensity readings are normalized to zero mean
and 0.1 standard deviation to mitigate divergence caused
by different radar used.

3. More Experimental Results

3.1. Utilization of Velocity Attribute

As stationary points in a scene have the same relative
velocity to the radar, the difference in their relative radial



Table 4. Comparisons with Scan Context, Intensity Scan Context, and other variants on 4D radar datasets.

Method NTU4DPR-Test NYL-Night NYL-Rain SRC-Night SJTU4DPR-TestA SJTU4DPR-TestB
r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10

Scan Context [5] 74.8 88.4 91.9 23.4 48.2 63.4 12.4 28.4 40.0 23.8 48.2 60.3 35.8 72.4 80.8 61.9 80.4 86.3
Azimuth Scan Context 78.5 88.8 91.6 85.4 92.3 94.0 58.7 73.6 79.1 71.0 84.0 89.2 79.7 84.8 86.6 79.0 85.5 88.4
Intensity Scan Context [9] 90.0 93.4 94.3 87.2 92.8 94.7 69.1 80.3 94.3 68.1 82.2 86.9 67.9 79.8 83.7 78.0 86.5 90.2
TransLoc4D-RVIT (ours) 95.1 96.1 96.4 97.1 98.4 98.7 86.8 91.8 94.0 94.5 97.0 98.0 90.8 92.9 93.4 85.9 88.7 90.5

velocities implicitly reflects their positions, where geo-
metric patterns could be mined. Therefore, the velocity
attribute of 4D radar scans may contain potentially ben-
eficial information for 4DRPR task. With this intuition,
we attempt to explore the velocity attribute for scene de-
scription.

Specifically, we propose the relative azimuth an-
gle derived from the velocity attribute of 4D radar as
a numerical feature. Table.1 in the main text shows
TransLoc4D-R-V steadily outperforms TransLoc4D-R,
verifying the effectiveness of the numerical representa-
tion of velocity attribute (-V) coupled with point cloud
refinement (-R). The numerical velocity representation
(-V) employed here refers to our proposed relative az-
imuth angle, which eliminates the bias caused by ego-
velocity of the 4D radar.

To further validate the new attribute of relative az-
imuth, we compare the two TransLoc4D-R-V variants
respectively taking the original relative radial veloc-
ity vd and the relative azimuth attribute s as input.
The benchmark with original velocity is denoted as
TransLoc4D-R-Vd.

As can be seen in Tab. 3, TransLoc4D-R-Vd con-
stantly underperforms TransLoc4D-R. A drastic per-
formance drop of over 10% can be observed on
SJTU4DPR-TestA, NYL-Rain, and SRC-Night. This
proves our conjecture that directly incorporating radial
relative velocity vd into feature embedding may intro-
duce bias, causing the model to learn harmful tricks.
Besides, TransLoc4D-R-V leads TransLoc4D-R-Vd by
a large margin on all datasets. It demonstrates the ad-
vantages of the new attribute s over the original velocity
attribute vd. It also verifies the rationality of decoupling
the speed and direction of velocity to formulate a new at-
tribute of relative azimuth independent of 4D radar ego-
velocity.

Combined with the experiments in the main text, a
conclusion can be drawn that the velocity attribute of
4D radar can be effective in eliminating dynamic inter-
ference and bringing robustness to the 4DRPR task.

3.2. Comparisons with 4D Radar Scan Context

In Sec.4.4 of the main text, we adapt the State-Of-
The-Arts (SOTA) learning architectures for 3D LiDAR
place recognition, MinkLoc3Dv2 [6], TransLoc3D [10],
and PTC-Net [4] to the 4D radar place recognition task.

On this basis, we compare the proposed TransLoc4D
with the adapted benchmark architectures and demon-
strate its superiority.

Besides learning-based architectures that learn scene
description directly from 3D points, another widely rec-
ognized handcrafted 3D point cloud descriptor is Scan
Context [5]. It converts point clouds into polar coor-
dinate images and proposes bird’s-eye view partition-
ing to construct regional maximum height features. Its
representative variant, Intensity Scan Context [9], uses
the maximum intensity instead of height to construct the
scan context matrix.

In order to compare them with our proposed
TransLoc4D in 4D radar place recognition, we adapt
Scan Context and Intensity Scan Context to 4D radar
first. While 3D LiDAR has a 360◦azimuth Field Of
View (FOV), 4D radar is with a narrower FOV (110◦for
NTU4DPR and 150◦for SJTU4DPR). Therefore, we di-
vide the 110◦sector area into 40 rings and 20 sectors
accordingly. The feature value of each bin is chosen
as the maximum height and the maximum intensity re-
spectively for Scan Context and Intensity Scan Context.
Other encoding steps remain the same as in Vanilla 3D
LiDAR Scan Context. Considering the velocity attribute
of 4D radar scanning, we set up an Azimuth Scan Con-
text similar to the Intensity Scan Context.

As in Tab. 4, Azimuth Scan Context significantly sur-
passes the baseline Scan Context, showing that the az-
imuth attribute is a better feature than the height for
4D radar Scan Context. Intensity Scan Context out-
performs Azimuth Scan Context on most subsets, ex-
cept for SRC-Night and SJTU4DPR-TestA. It demon-
strates the intensity attribute to be discriminative for the
4DRPR task. Although Scan Context variants demon-
strate good adaptability to the 4D radar place recognition
task, they are handcrafted descriptors that are not learn-
able. Our TransLoc4D is an end-to-end encoding archi-
tecture that is differentiable for fine-tuning. TransLoc4D
outperforms the second-best Scan Context variant by a
large margin of over 10% on NYL-Rain, SRC-Night,
and SJTU4DPR-TestA, which can be attributed to the
deep model and data-driven fine-tuning. This set of ex-
periments shows the potential of our TransLoc4D as a
replacement for the Scan Context family in robotic tasks,
such as loop closure detection in 4D radar Simultaneous
Localization and Mapping (SLAM) [12, 13].



Figure 2. Instances of TransLoc4D retrieval on NTU4DPR-NYL dataset with nighttime queries. By 4D point could descriptor
matching, TransLoc4D is able to correctly retrieve the reference point cloud when images exhibit drastic appearance differences.

Table 5. Comparison with SOTA 2D image place recognition
methods on 4D radar datasets.

NTU4DPR-Test recall@1 recall@5 recall@10
CosPlace [2] 97.9 98.0 98.1
EigenPlaces [3] 98.1 98.2 98.3
TransLoc4D (ours) 95.1 96.1 96.4
NYL-Night recall@1 recall@5 recall@10
CosPlace [2] 62.1 67.1 70.4
EigenPlaces [3] 73.6 79.6 82.3
TransLoc4D (ours) 97.1 98.4 98.7
SRC-Night recall@1 recall@5 recall@10
CosPlace [2] 84.5 89.2 90.8
EigenPlaces [3] 87.3 91.8 93.5
TransLoc4D (ours) 94.5 97.0 98.0

3.3. Comparisons with 2D Image Place Recogni-
tion

2D image place recognition (2DVPR) is more popu-
lar than 3D point cloud-based methods due to the easy
availability and established solutions of RGB sensors.
Despite the lack of 3D information, the rich features of
the RGB sensor guarantee reliable recognition capabil-
ities. However, the effectiveness of 2DVPR is compro-
mised by sensitivity to lighting changes, where drastic
illumination shifts significantly affect data distribution
and challenge its robustness.

Contemporary image-based algorithms typically em-
ploy a CNN [1] or Transformer [8] for feature ex-
traction from images, followed by aggregation using
NetVLAD [1] or GeM [2] pooling to create a descriptor
vector. Recent advancements, notably CosPlace [2] and
EigenPlace [3], have significantly improved VPR bench-
marks. Their advantages can be attributed to training
models on categorization tasks with Large Margin Co-
sine Loss and using UTM coordinates and image orien-
tations to refine the training process.

Figure 3. GIF visualization of retrieval results on NTU4DPR-
NYL dataset. The challenging nighttime queries retrieve the
daytime database. Red and green circles (left) and bounding
boxes (right-bottom) indicate incorrect and correct retrievals,
respectively. Long press the mouse on the GIF to pause and
view the point cloud and image retrieved by a single frame.

To benchmark our proposed TransLoc4D against
leading 2D image-based place recognition algorithms,
we reimplemented CosPlace [2], EigenPlaces [3] and
utilized their publicly available checkpoint. Given that
NTU4DPR offers both images and 4D radar data, it al-
lows for a direct comparison of these single-source al-
gorithms. All data, including images, 4D radar, and
GPS, are synchronized using their respective times-
tamps. The evaluation of these algorithms was con-
ducted across three distinct subsets of the NTU4DPR
dataset: NTU4DPR-Test, NYL-Night, and SRC-Night.
Both the NYL-Night and SRC-Night subsets utilize
nighttime queries, whereas the test set comprises queries
captured during daytime.

As illustrated in Tab. 5, EigenPlaces [3] demonstrates
strong performance in same-domain retrieval. However,
its performance is significantly reduced when query and
reference images are from different domains. In con-
trast, our TransLoc4D maintains nearly consistent per-
formance across different scenarios (day to night, main
roads to sidewalks, vehicle mounted to handheld), which
demonstrates its outstanding robustness against adverse



environments.

4. Additional Visualization Results
Fig. 3 gives a GIF visualization of retrieval results

of our TransLoc4D on the challenging NTU4DPR-NYL
dataset. It can be seen that TransLoc4D can correctly
retrieve most frames when the query and reference are
from different data domains. It verifies the feasibil-
ity of our TransLoc4D for 4D radar place recognition
tasks. In Fig. 2, when images exhibit drastic appearance
differences, 4D point clouds still show stable similari-
ties, which reflects the advantages of 4D radar over 2D
cameras in handling harsh environments and dynamic
objects. Fig. 4 presents some challenging queries in
NTU4DPR-NYL dataset and the top retrieved images
using different models. As can be seen, when other
benchmark models fail, TransLoc4D can still retrieve
the queries correctly. This demonstrates the better ro-
bustness of our proposed model. Overall, it can be in-
ferred from the additional visualization results that, tak-
ing advantage of the 4D radar attributes, TransLoc4D
can easily cope with practical challenges in the place
recognition task, such as illumination changes, and dy-
namic occlusions.

5. Application Scenarios and Future Work
The value of 4DRPR mainly lies in its ability to en-

able robust perception in harsh conditions, such as heavy
rain, snow, smoke, fog, and dust. Specifically, 4DRPR
enables robust localization and re-localization in such
adverse conditions, where traditional camera and Li-
DAR will fail to perform such tasks. One most straight-
forward application of 4DRPR is it can be used in 4D
radar SLAM [12] as the loop closure module, since cor-
rect loop closure is of key importance to the back-end
optimization of SLAM system.

The potential application scenarios include but are
not limited to the following:

• Firefighting robot which operates in heavy smoke
and fog environment.

• Unmanned vehicles which run in heavy fog or
heavy snow environments.

• Autonomous bulldozers that operate in heavy dust
environments.

• Mining robots that run in an underground environ-
ment with heavy dust and low illumination.

For future work, two directions are worth exploring:
1) Pre-processing of 4D point cloud. As mentioned be-
fore, the point cloud of 4D radar is sparse, cluttered and
noisy, which poses challenges to the 4DRPR task. Thus,

a better strategy to pre-process the 4D point cloud could
be researched to improve the model performance. For
example, densification or completion of sparse 4D point
clouds. 2) Multi-modal based place recognition. Con-
sidering that different sensors have their own advantages
and disadvantages, in some ways they can complement
each other. Thus, it is worth exploring to fuse other sen-
sors together with 4D radar for the place recognition
task, to achieve all-weather place recognition with su-
perior performance.
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