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9. Datasets
Meta-Dataset [55] is a few-shot classification benchmark
that initially consists of ten datasets: ILSVRC 2012 (Ima-
geNet) [51], Omniglot [34], FGVC-Aircraft (Aircraft) [44],
CUB-200-2011 (Birds) [58], Describable Textures (Tex-
tures) [13], QuickDraw [31], FGVCx Fungi (Fungi) [8],
VGG Flower [46], Traffic Signs [26] and MS-COCO [42].
It further expands with the addition of MNIST [35], CIFAR-
10 [33] and CIFAR-100 [33]. Each dataset is further di-
vided into train, validation and test sets with disjoint classes.
We follow the standard training protocols proposed by [55]
and consider both “Training on all datasets” (MDL: multi-
domain learning) and “Training on ImageNet-Train only”
(SDL: single-domain learning) settings. For the former, we
follow the standard procedure and use the training set of the
first eight datasets for pre-training. During evaluation, the
test set of the eight datasets are used for evaluating the gen-
eralization ability in the seen domains while the remaining
five datasets are used to evaluate the cross-domain general-
ization ability. In the “Training on ImageNet-Train only”
setting, we follow the standard procedure and only use the
train set of ImageNet for pre-training. The evaluation is per-
formed on the test set of ImageNet as the seen domain while
the rest 12 datasets are considered unseen domains. Addi-
tionally, to compare our method with more recent state-of-
the-art [28], we also use a pre-trained model on the full Im-
ageNet dataset for “Training on ImageNet-Full” (SDL-E:
single-domain learning-extra data) setting, where the evalu-
ation is performed similarly to the “Training on ImageNet-
Train only” setting.

We also report additional results for the following
datasets in the Appendix.

miniImageNet [57] contains 100 classes from
ImageNet-1k, set into 64 training, 16 validation and
20 testing classes.

CIFAR-FS [5] is created by dividing the original
CIFAR-100 into 64 training, 16 validation and 20 testing
classes.

10. Implementation details
10.1. Pre-trianing using Masked Image Modelling
We employ Masked Image Modelling (MIM) to pre-train
the feature extractor and follow the hyper-parameters and
data augmentations recommended in [62]. The teacher
patch temperature was set to 0.04, in contrast to the default
value of 0.07 after observing that a lower temperature leads

to more consistent and stable training losses.2.
MDL: We employ the train sets of the eight in-domain

datasets (ImageNet, Omniglot, Aircraft, Birds, Textures,
and VGG Flower) considered under the MDL setting for
pre-training f✓.

SDL: We employ the train set of the ImageNet dataset
for pre-training f✓.

SDL-E: The entire ImageNet dataset is utilized to train
the feature extractor 3 f✓ [28].

10.2. Pre-trianing on DINO
SDL-E: To compare with the MIM pre-training on SDL-E,
we utilize the pre-trained checkpoint weights provided by
DINO [9] after training on the entire ImageNet dataset.

10.3. Hyperparameters
10.3.1 Task-specific parameter initialization

For results reported in the main text, we choose constant ini-
tialization of task-specific parameters � (scale) and � (shift)
as one and zero, respectively. However, one could also em-
ploy a normalized initialization, where the mean values of
� and � are one and zero [62]. Therefore, we report results
for normalized initialization and constant initialization in
Supplementary Table 6 columns 1 and 2, respectively. No-
tably, we obtain better results for the constant initialization
in comparison to the normalized initialization.

10.3.2 AdamW vs NAdam

Recently, AdamW has gained popularity as a preferred
choice for fine-tuning large models such as ViTs [59]. Nev-
ertheless, our results, as detailed in Supplementary Table 6,
columns 2 and 3, demonstrate that NAdam yields superior
performance in the context of cross-domain few-shot clas-
sification.

10.3.3 Anchor initialization

While A� anchors in DIPA are randomly initialized for each
task, one can argue that using the mean of the support em-
bedding vectors can be a favourable anchor initialization
point. Consequently, we report the results for random vs
custom initialization of anchors in Supplementary Table 6,
columns 2 and 4. Here, the anchors are randomly initialized
for A� (random) while the mean of class embedding vectors

2https://github.com/bytedance/ibot/issues/19
3https://github.com/bytedance/ibot#pre-trained-models



�,� (constant) X X X
�,� (normal) X
NAdam X X X
AdamW X
A� (random) X X X
A� (custom) X
ImageNet 69.22 ± 0.94 70.86 ± 0.95 68.21 ± 0.96 70.25 ± 0.98
Omniglot 83.55 ± 1.17 84.68 ± 1.10 82.79 ± 1.18 84.55 ± 1.15
Aircraft 85.91 ± 1.06 86.33 ± 0.95 86.55 ± 1.00 85.05 ± 1.06
Birds 90.31 ± 0.80 90.75 ± 0.75 88.49 ± 0.88 89.70 ± 0.88
Textures 87.66 ± 0.66 88.60 ± 0.51 87.15 ± 0.62 88.61 ± 0.56
Quick Draw 74.27 ± 0.82 75.29 ± 0.77 72.81 ± 0.83 75.10 ± 0.77
Fungi 66.07 ± 1.05 66.64 ± 1.05 64.30 ± 1.05 65.54 ± 1.07
VGG Flower 97.71 ± 0.32 97.88 ± 0.30 97.24 ± 0.38 97.63 ± 0.32
Traffic Sign 89.84 ± 1.19 91.29 ± 0.96 87.29 ± 1.13 89.80 ± 0.97
MS-COCO 62.34 ± 1.04 64.78 ± 0.95 57.84 ± 1.07 64.67 ± 1.01
MNIST 96.64 ± 0.49 96.87 ± 0.53 96.14 ± 0.60 96.82 ± 0.50
CIFAR-10 84.56 ± 0.85 87.40 ± 0.64 79.72 ± 1.03 87.81 ± 0.66
CIFAR-100 79.38 ± 0.94 81.24 ± 0.78 75.29 ± 0.94 80.28 ± 0.83
Average Seen 79.6 82.6 80.9 82.1
Average Unseen 82.6 84.3 79.3 82.7
Average All 80.8 83.3 80.3 82.3

Table 6. Comparision of varying the task-specific parameter ini-
tialization (constant vs normal), Optimizers (NAdam vs AdamW)
and A� anchor initialization (random vs custom) in the MDL set-
ting.

initializes the anchors for A� (custom). Notably, using un-
adapted feature embeddings for anchor initialization may
hinder fine-tuning due to priors imposed by unadapted fea-
tures. In contrast, using random initialization, together with
a substantial learning rate may offer better adaptability for
anchors during fine-tuning without being influenced by ir-
relevant priors. This is also reflected in the results reported
in Supplementary Table 6, columns 2 and 4, where random
initialization outperforms custom initialization, confirming
our selection in the DIPA framework.

10.3.4 Number of fine-tuning iterations

We experimentally determined the number of fine-tuning it-
erations. We report the results for four such scenarios in
Supplementary Table 7. As reported in the results, lA� with
80 iterations provides the highest accuracy. Therefore, in
our framework, we use 80 as the number of iterations for
fine-tuning.

Fine Tune # Iterations Avg. Seen Avg. Unseen Avg. All
DIPA 40 81.5 82.4 81.8
DIPA 80 82.6 84.3 83.3

Table 7. Comparing the average (Avg.) performance variation as
the number of epochs varies for seen, unseen and all domains in
the MDL setting.

11. Addtional Results for Meta-Dataset
11.1. Feature Space Visualizations: Before and Af-

ter Fine-Tuning
By using UMAP visualizations, we identify the impact of
fine-tuning the feature space using lA� in Supplementary
Fig. 6 and 7. Here, the left columns illustrate that semantic
clusters have already emerged using the pre-trained MIM
features, although overlapped/dispersed in some instances.
Thereafter, as illustrated in the right columns, lA� uses the
strong initialization provided by MIM and further refines
the feature space to form better-separated clusters that show
high inter-class variance and low intra-class variance.

11.2. Prototype Visualizations
The placement of anchors A� and mean embedding-based
prototypes after fine-tuning is visualized in Fig. 8. As dis-
cussed in Section 6.1, while A� provides strong supervision
for cluster formation during fine-tuning, after fine-tuning,
we observe that they are placed with a small offset from
the mean representation (mean embedding prototype) of the
clusters.

11.3. Impact of tuned depth
Supplementary Table 8 reports the variation of accuracies
as the number of tuned layers dt vary on the MDL setting
for Meta-Dataset. A summary of Supplementary Table 8 is
shown in the main text’s Fig. 4 and 5.

11.4. Feature fusion depth
We report the dataset-level accuracy values obtained as we
vary the feature fusion depths in Supplementary Table 9,
where a summary of it was presented in the main text.

11.5. Pre-training results
The dataset-level accuracies reported in the SDL-E setting
by DINO and MIM pre-trained models with varying fine-
tuning strategies are reported in Supplementary Table 10.

11.6. Further results on Meta-Dataset
After evaluating our framework over a broad range of vary-
ing shots K (e.g. up to 100 shots), we further analyze
our framework in a more challenging setting. While lA�

requires at least two examples per class in order to gain
benefits from its discriminative sample-based feature space
adaptation, here we evaluate its performance in the more
challenging varying-way, 5-shot setting, comparing it with
other works that have reported results in this context [37].
As shown in Supplementary Table 11, overall performance
for all methods has decreased due to the even more chal-
lenging nature of the support set. Nevertheless, our method
still outperforms the existing methods when the number of



Figure 6. UMAP visualization of clusters formed in the feature space for Aircraft domain in MDL setting. The clusters formed before and
after fine-tuning with DIPA, are illustrated in the first and second columns, respectively.

d 0 1 2 3 4 5 6 7 8 9 10 11 12
ImageNet 66.51 ± 1.02 68.22 ± 0.95 70.24 ± 1.01 71.11 ± 0.95 71.37 ± 0.94 71.00 ± 0.92 71.36 ± 0.91 70.86 ± 0.95 69.71 ± 0.94 68.39 ± 0.95 68.05 ± 0.92 67.57 ± 0.95 67.13 ± 0.93
Omniglot 67.04 ± 1.23 72.63 ± 1.29 71.87 ± 1.34 75.52 ± 1.25 80.10 ± 1.16 81.92 ± 1.19 83.58 ± 1.09 84.68 ± 1.10 82.91 ± 1.25 84.25 ± 1.19 84.51 ± 1.16 84.81 ± 1.11 84.33 ± 1.16
Aircraft 52.97 ± 0.95 75.97 ± 0.96 77.01 ± 1.04 80.67 ± 0.99 83.88 ± 0.99 85.12 ± 0.99 85.95 ± 1.02 86.33 ± 0.95 85.45 ± 1.09 86.35 ± 0.95 85.04 ± 1.03 85.35 ± 0.99 83.44 ± 1.12
Birds 83.12 ± 0.82 89.04 ± 0.69 90.40 ± 0.59 90.20 ± 0.67 90.92 ± 0.71 91.01 ± 0.74 91.22 ± 0.67 90.75 ± 0.75 90.50 ± 0.68 89.74 ± 0.77 89.17 ± 0.80 89.56 ± 0.74 88.63 ± 0.75
Textures 84.95 ± 0.50 86.89 ± 0.58 88.34 ± 0.53 88.49 ± 0.52 88.25 ± 0.59 88.95 ± 0.56 88.52 ± 0.58 88.60 ± 0.51 87.83 ± 0.65 87.39 ± 0.64 86.20 ± 0.66 84.95 ± 0.71 85.47 ± 0.57
Quickdraw 54.78 ± 0.94 63.47 ± 0.93 64.63 ± 0.96 67.80 ± 0.90 71.55 ± 0.94 73.69 ± 0.85 74.65 ± 0.85 75.29 ± 0.77 74.38 ± 0.75 75.55 ± 0.80 75.97 ± 0.73 75.49 ± 0.75 75.05 ± 0.83
Fungi 57.33 ± 1.06 61.30 ± 1.06 62.99 ± 1.18 63.86 ± 1.07 66.35 ± 1.08 66.87 ± 1.12 66.91 ± 1.06 66.64 ± 1.05 67.52 ± 1.05 65.03 ± 1.06 63.45 ± 1.10 63.59 ± 1.06 63.96 ± 1.08
VGG Flower 97.56 ± 0.25 97.10 ± 0.34 97.29 ± 0.33 97.27 ± 0.36 97.78 ± 0.30 98.06 ± 0.28 97.99 ± 0.29 97.88 ± 0.30 97.65 ± 0.31 97.55 ± 0.32 97.14 ± 0.36 97.00 ± 0.38 97.28 ± 0.32
Traffic Sign 40.20 ± 1.07 52.42 ± 1.25 57.42 ± 1.27 60.77 ± 1.19 68.90 ± 1.23 75.15 ± 1.17 80.71 ± 1.17 85.52 ± 1.04 89.46 ± 0.91 91.29 ± 0.96 91.99 ± 0.96 92.76 ± 0.83 92.25 ± 0.96
MSCOCO 54.13 ± 0.97 56.50 ± 0.95 58.64 ± 0.97 63.19 ± 1.01 63.22 ± 0.95 65.75 ± 1.00 65.59 ± 0.97 65.32 ± 0.93 64.70 ± 0.97 64.78 ± 0.95 63.46 ± 0.92 62.56 ± 1.00 62.02 ± 0.94
MNIST 74.81 ± 0.74 86.77 ± 0.75 88.46 ± 0.73 89.86 ± 0.80 93.75 ± 0.68 94.51 ± 0.68 95.27 ± 0.65 96.13 ± 0.59 96.68 ± 0.53 96.87 ± 0.53 96.78 ± 0.50 97.51 ± 0.40 97.12 ± 0.45
CIFAR-10 81.54 ± 0.64 86.54 ± 0.60 87.14 ± 0.65 87.60 ± 0.59 88.39 ± 0.58 89.17 ± 0.60 88.92 ± 0.61 89.04 ± 0.56 88.09 ± 0.61 87.40 ± 0.64 86.43 ± 0.68 85.75 ± 0.71 84.70 ± 0.76
CIFAR-100 73.41 ± 0.88 78.02 ± 0.79 78.57 ± 0.75 79.08 ± 0.78 81.32 ± 0.76 80.71 ± 0.76 80.99 ± 0.78 81.33 ± 0.81 81.45 ± 0.71 81.24 ± 0.78 80.02 ± 0.77 78.78 ± 0.79 78.53 ± 0.81
Average Seen 70.5 76.8 77.8 79.4 81.3 82.1 82.5 82.6 82 81.8 81.2 81 80.7
Average Unseen 64.8 72 74 76.1 79.1 81.1 82.3 83.5 84.1 84.3 83.7 83.5 82.9
Average All 68.3 75 76.4 78.1 80.4 81.7 82.4 83 82.8 82.8 82.2 82 81.5

Table 8. Variation of accuracies as the number of tuned layers dt varies in the MDL setting for in-domain and out-of-domain datasets in
Meta-Dataset.

Fusion depth ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MS-COCO MNIST CIFAR-10 CIFAR-100 Average All
1 70.2 ± 0.9 84.9 ± 1.1 86.2 ± 1.1 90.5 ± 0.7 88.3 ± 0.6 74.7 ± 0.8 66.5 ± 1.0 97.3 ± 0.4 90.3 ± 1.0 63.1 ± 0.9 97.4 ± 0.4 87.6 ± 0.6 80.4 ± 0.8 82.9
2 70.5 ± 1.0 84.4 ± 1.2 86.7 ± 1.0 90.8 ± 0.7 87.9 ± 0.6 74.8 ± 0.8 66.6 ± 1.1 97.5 ± 0.3 90.4 ± 1.0 63.3 ± 1.0 97.0 ± 0.5 88.0 ± 0.6 80.0 ± 0.8 82.9
4 70.9 ± 1.0 84.7 ± 1.1 86.3 ± 1.0 90.8 ± 0.8 88.6 ± 0.5 75.3 ± 0.8 66.6 ± 1.0 97.9 ± 0.3 91.3 ± 1.0 64.8 ± 1.0 96.9 ± 0.5 87.4 ± 0.6 81.2 ± 0.8 83..3
6 71.6 ± 0.9 85.5 ± 1.1 86.1 ± 1.0 90.9 ± 0.7 88.0 ± 0.5 75.3 ± 0.8 66.0 ± 1.0 97.6 ± 0.4 90.3 ± 1.1 63.7 ± 1.0 97.3 ± 0.4 87.3 ± 0.6 80.8 ± 0.8 83.1
8 69.2 ± 1.0 85.4 ± 1.1 85.6 ± 1.0 90.4 ± 0.8 87.4 ± 0.6 75.0 ± 0.8 65.4 ± 1.2 97.6 ± 0.4 90.7 ± 1.0 63.5 ± 1.0 96.9 ± 0.6 86.3 ± 0.7 80.0 ± 0.8 82.6
12 68.0 ± 1.0 85.4 ± 1.1 85.7 ± 0.9 89.4 ± 0.9 87.7 ± 0.6 74.5 ± 0.8 63.6 ± 1.2 97.7 ± 0.3 91.3 ± 0.9 62.7 ± 1.0 97.2 ± 0.4 86.1 ± 0.6 78.6 ± 0.8 82.1

Table 9. Variation of accuracies as the feature fusion depth df vary on the MDL setting.

support images per class is fewer, especially on the chal-
lenging unseen domains by 2.9%.



Figure 7. UMAP visualization of clusters formed in the feature space for Textures domain in MDL setting. The clusters formed before and
after fine-tuning with DIPA are illustrated in the first and second columns, respectively.

Pre-training MIM DINO
Fine-tuning NCC DIPA NCC DIPA

ImageNet 75.71 ± 0.81 77.26 ± 0.74 75.47 ± 0.82 75.89 ± 0.78
Omniglot 80.38 ± 1.36 84.06 ± 1.20 80.19 ± 1.31 83.65 ± 1.15
Aircraft 83.06 ± 1.03 87.09 ± 0.99 81.41 ± 1.10 85.88 ± 1.00
Birds 88.32 ± 0.75 90.52 ± 0.67 87.91 ± 0.77 90.37 ± 0.65
Textures 86.23 ± 0.69 87.32 ± 0.63 86.51 ± 0.72 87.06 ± 0.63
Quickdraw 73.38 ± 0.81 75.41 ± 0.81 72.62 ± 0.88 75.30 ± 0.79
Fungi 59.57 ± 1.08 60.89 ± 1.09 60.02 ± 1.14 62.16 ± 1.10
VGG Flower 96.88 ± 0.40 97.48 ± 0.36 96.56 ± 0.41 97.24 ± 0.35
Traffic Sign 89.93 ± 0.94 91.66 ± 0.84 89.68 ± 0.94 91.20 ± 0.81
MSCOCO 64.52 ± 0.98 66.54 ± 0.93 64.30 ± 0.96 65.13 ± 0.99
MNIST 96.15 ± 0.50 97.24 ± 0.45 95.21 ± 0.63 96.82 ± 0.49
CIFAR-10 90.23 ± 0.66 92.23 ± 0.47 88.20 ± 0.76 89.95 ± 0.66
CIFAR-100 82.21 ± 0.79 84.48 ± 0.70 80.97 ± 0.76 82.29 ± 0.76
Average Seen 75.7 77.3 75.5 75.9
Average Unseen 82.6 84.6 82.0 83.9
Average All 82.0 84.0 81.5 83.3

Table 10. The impact of varying the pre-training and finetuning
algorithms in SDL-E setting.

12. Addtional Results for miniImageNet and
CIFAR-FS

Supplementary Table 12 reports the results for evaluating
the DIPA framework under the SDL-E setting on CIFAR-
FS and mini-ImageNet datasets. Here, we follow PMF [28]

Simple
CNAPS SUR URT TSA DIPA

SS PT X
Sup. MT X X X X
Backbone RN18 RN18 RN18 RN18 ViT-s
ImageNet 47.2 ± 1.0 46.7 ± 1.0 48.6 ± 1.0 48.3 ± 1.0 60.17 ± 0.80
Omniglot 95.1 ± 0.3 95.8 ± 0.3 96.0 ± 0.3 96.8 ± 0.3 91.30 ± 0.46
Aircraft 74.6 ± 0.6 82.1 ± 0.6 81.2 ± 0.6 85.5 ± 0.5 64.77 ± 0.68
Birds 69.6 ± 0.7 62.8 ± 0.9 71.2 ± 0.7 76.6 ± 0.6 87.55 ± 0.39
Textures 57.5 ± 0.7 60.2 ± 0.7 65.2 ± 0.7 68.3 ± 0.7 79.69 ± 0.50
Quickdraw 70.9 ± 0.6 79.0 ± 0.5 79.2 ± 0.5 77.9 ± 0.6 68.40 ± 0.68
Fungi 50.3 ± 1.0 66.5 ± 0.8 66.9 ± 0.9 70.4 ± 0.8 66.57 ± 0.77
VGG Flower 86.5 ± 0.4 76.9 ± 0.6 82.4 ± 0.5 89.5 ± 0.4 96.96 ± 0.18
Traffic Sign 55.2 ± 0.8 44.9 ± 0.9 45.1 ± 0.9 72.3 ± 0.6 83.91 ± 0.45
MSCOCO 49.2 ± 0.8 48.1 ± 0.9 52.3 ± 0.9 56.0 ± 0.8 64.64 ± 0.68
MNIST 88.9 ± 0.4 90.1 ± 0.4 86.5 ± 0.5 92.5 ± 0.4 92.07 ± 0.33
CIFAR-10 66.1 ± 0.7 50.3 ± 1.0 61.4 ± 0.7 72.0 ± 0.7 80.37 ± 0.53
CIFAR-100 53.8 ± 0.9 46.4 ± 0.9 52.5 ± 0.9 64.1 ± 0.8 76.79 ± 0.64
Average Seen 69.0 71.2 73.8 76.7 76.9 (+0.2)
Average Unseen 62.6 56.0 59.6 71.4 74.3 (+2.9)
Average All 66.5 65.4 68.3 74.6 76.4 (+2.2)

Table 11. Results of Varying-Way Five-Shot in the MDL setting.
Average (Avg.) accuracies are reported. RN: ResNet, ViT-s: ViT-
small, SS PT: indicates self-supervised pre-training and Sup. MT:
indicates supervised meta-training.

and compare DIPA with relevant existing methods. Our
approach can be directly compared with methods that em-
ploy SSL for pre-training, both with and without subse-



Figure 8. UMAP visualization of clusters formed in the feature
space after fine-tuning with mean embedding-based prototypes
and anchors A�.

quent fine-tuning (Supplementary Table 12, row D0-D4).
Among those methods, our approach has superior perfor-
mance across most scenarios. Notably, among the other
methods that use various other training strategies, we still
obtain somewhat good performance without requiring addi-
tional meta-training or training labels.

ID Method Backbone Ext. Ext. miniImageNet CIFAR-FS
dat. lab. 5/1 5/5 5/1 5/5

Inductive
A0 Baseline++ [11] CNN-4-64 48.2 ± 0.8 66.4 ± 0.6
A1 MetaOpt-SVM [36] ResNet12 62.6 ± 0.6 78.6 ± 0.5 72.0 ± 0.7 84.2 ± 0.5
A2 Meta-Baseline [12] ResNet12 63.2 ± 0.2 79.3 ± 0.2
A3 RS-FSL [1] ResNet12 X 65.3 ± 0.8

Transductive
B0 Fine-tuning [15] WRN-28-10 65.7 ± 0.7 78.4 ± 0.5 76.6 ± 0.7 85.8 ± 0.50
B1 SIB [27] WRN-28-10 70.0 ± 0.6 79.2 ± 0.4 80.0 ± 0.6 85.3 ± 0.4
B2 PT-MAP [29] WRN-28-10 82.9 ± 0.3 88.8 ± 0.1 87.7 ± 0.2• 90.7 ± 0.2
B3 CNAPS + FETI [4] WRN-28-10 X X 79.9 ± 0.8 91.5 ± 0.4

Semi-Supervised
C0 LST [39] ResNet12 X 70.1 ± 1.9 78.7 ± 0.8
C1 PLCM [30] ResNet12 X 72.1 ± 1.1 83.7 ± 0.6 77.6 ± 1.2 86.1 ± 0.7

Self-Supervised
D0 ProtoNet [23] WRN-28-10 62.9 ± 0.5 79.9 ± 0.3 73.6 ± 0.3 86.1 ± 0.2
D1 ProtoNet [10] AMDIM ResNet X 76.8 ± 0.2 91.0 ± 0.1
D2 EPNet + SSL [50] WRN-28-10 X 79.2 ± 0.9 88.1 ± 0.5
D3 FewTure [25] ViT-small 68.0 ± 0.9 84.5 ± 0.5 76.1 ± 0.9* 86.1 ± 0.6
D4 DIPA ViT-small X 79.6 ± 0.7* 94.3 ± 0.3* 65.2 ± 0.9 88.4 ± 0.6*

Self-Supervised + MT
E0 PMF [28] ViT-small X 93.1• 98.0• 81.1 92.5•

Table 12. Comparison with representative state-of-the-art FSL al-
gorithms on miniImageNet & CIFAR-FS for 5-way-1-shot (5/1)
and 5-way-5-shot (5/5). Mean accuracy and 95% confidence inter-
val are reported, where available. X indicates the use of Extra data
or Extra labels. MT: Meta-train, and * denotes the highest perfor-
mance among the most relevant methods that are directly compa-
rable to DIPA while • denotes the highest performance overall.
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