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7. Overview

In this supplementary material we provide:

1. Additional details about the implementation of ANIM

2. Details about the architectural design of VFE (Voxel

Feature Extractor)

3. Further details on ANIM-Real

4. Limitations of the proposed approach

5. Additional results obtained by applying ANIM on real

noisy data captured with Azure Kinect

6. Qualitative results for the ablations studies presented in

the main paper

7. Additional qualitative results, to further demonstrate that

ANIM and the new technical contributions we propose

clearly outperform prior works on reconstruction quality.

8. Implementation details

In our proposed network architecture, the normals and the

RGB images are concatenated and processed by the two

hourglass architectures with four stacks each: the HR-

FE outputs an embedding of resolution 256 × 256 × 256

while the resolution of the features obtained from LR-FE is

256 × 128 × 128. The former are bi-linearly interpolated

with the ground-truth points projected on the input image to

align the point and the feature in the 2D space. The latter are

given as input to the VFE along with a voxel created from

the input depth map. 3D points from the depth map are ob-

tained by transforming 2D image coordinates to 3D world

coordinates using the camera parameters, prior to normal-

ization. The voxel is created from these 3D points. The LR

features are aligned with the voxel, which is created with

as many voxels as the number of channels of the LR fea-

ture (256). The VFE is a novel SparseConvNet U-Net style

architecture, based on SparseConvNet [19] that has shown

to be efficient for the task of 3D object detection when the
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input is sparse. Following [44], for any point in 3D space,

we tri-linearly interpolate the latent codes from multi-scale

code volumes with the ground truth point. The VFE and

the HR-FE features are concatenated and finally classified

by the MLP with a number of neurons equal to (369, 512,

256, 128, 1). The same features extracted from the VFE and

the HR-FE are then interpolated with the point cloud for the

depth-supervision. We implement our proposed framework

using PyTorch and run training and testing with NVIDIA

Tesla V100 GPUs. We train the neural networks with Adam

optimizer and a learning rate lr = 1e− 4 and δ = 1.25. In-

ference time for one image, without code optimization, is in

the order of the second.

For the comparisons in Sec. 5.3 IF-Net, PaMIR, ICON,

SuRS, OcPlans, and (6) PIFu and IF-Net variants are re-

trained with the same dataset and configuration as ANIM.

PIFuHD, ECON, PHORHUM and NormalGAN are not re-

trained due to unavailability of training code. We used their

checkpoints for evaluation. All methods are tested on the

same datasets (RenderPeople [1], THuman2.0 [60]).

Ethical concerns. ANIM was trained on public datasets

that do not reveal the identity of subjects. ANIM aims

at faithfully capturing full-body humans without alteration

and body distortion, avoiding potential misuse or misrepre-

sentation.

9. VFE Architecture

We report in Tab. 4 the detailed architecture of VFE, which

consists of a SparseConvNet U-net that we designed for

ANIM. The SparseConvNet implements spatially sparse

convolutional networks [19]. The VFE architecture is im-

plemented using sub-manifold sparse convolution opera-

tions. The table gives the sizes of the different layers and

of the receptive fields. We experimented with various vari-

ants and report the ones that returned the best results in our

experiments.



Layer Layer Description Output Dimension

Input volume D ×H ×W × 256

1-3 (3×3×3 conv, 16 features, stride 1) ×2 D×H×W×16

4 (3×3×3 conv, 32 features, stride 2) 1/2D×1/2H×1/2W×32

5-6 (3×3×3 conv, 32 features, stride 1) ×2 1/2D×1/2H×1/2W×32

7 (3×3×3 conv, 64 features, stride 2) 1/4D×1/4H×1/4W×64

8-10 (3×3×3 conv, 64 features, stride 1) × 3 1/4D×1/4H×1/4W×64

11 (3×3×3 conv, 128 features, stride 2) 1/8D×1/8H×1/8W×128

12-15 (3×3×3 conv, 128 features, stride 1)×4 1/8D×1/8H×1/8W×128

16 3×3×3 invConv, 64 features, stride 1 1/4D×1/4H×1/4W×64

- concat output 16/10 1/4D×1/4H×1/4W×128

17 3×3×3 conv, 32 features, stride 1 1/4D×1/4H×1/4W×64

18-20 (3×3×3 conv, 32 features, stride 1) × 3 1/4D×1/4H×1/4W×64

21 3×3×3 invConv, 32 features, stride 1 1/2D×1/2H×1/2W×32

- concat output 21/6 1/2D×1/2H×1/2W×64

22 3×3×3 conv, 32 features, stride 1 1/2D×1/2H×1/2W×32

23-24 (3×3×3 conv, 32 features, stride 1) × 2 1/2D×1/2H×1/2W×32

25 3×3×3 invConv, 16 features, stride 1 D×H×W×16

- concat output 25/3 D×H×W×32

26 3×3×3 conv, 16 features, stride 1 D×H×W×16

27-28 (3×3×3 conv, 16 features, stride 1) × 2 D×H×W×16

Table 4. VFE SparseConvNet U-net Architecture.

10. ANIM-Real dataset details

As explained in Sec. 4 of the main paper, the performance

of neural implicit models significantly deteriorates when

tested with raw data from consumer-grade sensors due to

the severe input noise. To address this problem, we cu-

rated a new dataset (ANIM-Real) consisting of RGB-D

noisy data captured with Azure Kinect and high-quality 3D

ground-truth meshes reconstructed using a high-resolution

camera system that employs active stereo and multi-view

cameras [24]. We fine-tune ANIM with this dataset to re-

construct accurate and high-quality 3D human shapes from

real-world data, mitigating the impact of the sensor noise.

This section provides further details on the system used for

data capture and presents examples of data of ANIM-Real.

The capture system comprises two subsystems, with 1

Azure Kinect camera and 32 multi-view stereo cameras

from [24]. To acquire the data, we calibrate the two systems

in order to align the 3D ground-truth meshes with the RGB-

D data. The collected dataset consists of 31 subjects, with

16 women and 15 men captured, each subject performing a

set of scripted animations (e.g., standing, walking, turning,

jogging, stretching, putting on/taking off clothes). Some

examples of data are shown in Fig. 10.

Datasets that integrate high-resolution 3D ground-truth

shapes with raw RGB-D data are currently unavailable. The

introduction of ANIM-Real is a valuable contribution to the

research community in the context of neural implicit 3D hu-

man reconstruction. This dataset helps to mitigate domain

Figure 8. Limitations of ANIM. Accuracy is reduced in challeng-

ing scenes (a). Noise still affects the final reconstruction is some

body parts of the shape (b).

gaps, providing researchers with a resource that facilitates

the development of effective techniques in this domain.

11. Limitations

Failure cases can arise from challenging scenes that include

arbitrary objects or complex motions (e.g. taking of clothes)

as shown in Fig. 8a.
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Figure 9. Qualitative comparison with PIFu+VFE+SN using real-world data.

The accuracy of ANIM applied to real-world data is slightly

lower than the one achieved with synthetic data since ANIM

is still influenced by the noise of the input raw data, which

can affect the reconstruction as shown in Fig. 8b where the

ankle of the model is not reconstructed.

The model could be further fine-tuned to learn specific sen-

sor noise and mitigate domain gaps.

12. Additional results on real-world data

We test ANIM on real-world data obtained with an Azure

Kinect after fine-tuning with additional 16k frames, consist-

ing of around 800 frames in average from a single view of

21 subjects. Fig. 10 shows examples of ANIM reconstruc-

tion from real single RGB-D images captured with a Kinect

Azure. Our approach can retrieve high-quality details on

the final mesh even if the input normals and depth are noisy.

ANIM can eliminate the noise of the consumer-grade sen-

sor, significantly improving the reconstruction with accu-

rate and high-quality 3D human shapes. We present fur-

ther qualitative comparisons among different methods using

real-world data. Given the inherent challenges associated

with the real-world dataset, we show results from one of

the most competitive methods, PIFu+VFE+SN, both before

and after finetuning. As illustrated in Figure 9, finetuning

PIFu+VFE+SN on ANIM-Real yeilds qualitative improve-

ments, yet not on par with ANIM.

13. Ablation Studies

We illustrate qualitative comparisons for the ablation stud-

ies presented in Sec. 5.2 of the main paper. The labels used

in the figures are consistent with the ablation study con-

ducted in Tab. 1 and Tab. 2 in the main paper. Fig. 11 illus-

trates the role that each module of ANIM plays in represent-

ing high-quality details in the final reconstruction, with the

highest-quality shapes obtained when all the modules are

exploited. More specifically, fewer details are represented

in the face and hands of the model when spatial-aware sam-

pling is not applied. The importance of normals and HR

feature can also be noticed by the reduced amount of de-

tails in the final reconstruction. Less accurate shapes are

then obtained if LR feature is not used. The introduction

of depth supervision further increases the accuracy and the

details in the reconstructed shapes. Fig 12 demonstrates the

effectiveness of the architecture of ANIM. Each key com-

ponent was tested one-by-one and it is proved that the com-

plete model outperforms the others with more accurate and

highly-detailed 3D shapes.

14. Additional qualitative Results

Additional qualitative comparisons for approaches that re-

construct the 3D shape from an input different than RGB-

D are presented in Fig. 13 while Fig. 14 shows additional

results obtained by reconstructing 3D shapes from RGB-

D data. ANIM consistently generates high-fidelity recon-

structions, with cloth wrinkles and high-quality faces and

hands in accordance with the input RGB images thanks to

our depth-supervision strategy. Depth ambiguity issues are

also solved by leveraging the depth channel of the input

data. Moreover, it is shown how the contributions we pro-

pose, such as using the VFE and the multi-resolution fea-

tures of HR-FE and LR-FE, can be used to improve other

approaches, but only our complete ANIM model design re-

turns the best results.

Fig. 15 shows results of reconstructing 3D shapes from in-

put different than RGB-D for other related methods that are

not shown in the paper.

Fig. 16 show the the side-view reconstruction of the results

showed in Fig. 7 and Fig. 14.



Figure 10. More reconstruction results by ANIM using a consumer-grade RGB-D camera (Azure Kinect) as an input. ANIM is capable

of handling various human body and cloth typologies ranging from a skirt to a bath robe and is agnostic to diverse human poses.



Input w/o LR feature w/o HR feature

w/o SA sampling w/o Normals Ours Full

w/o  �����/

Figure 11. We conducted an ablation study on the components of ANIM that influence the reconstruction quality. We show reconstructions

of 2 subjects (one from THuman2.0 [60] and the other from RenderPeople [1]) captured by a single-view RGBD image (i.e. partial view),

from frontal and 45-deg side views. Our full ANIM model provides high-quality reconstructions with facial expressions, hands, and cloth

wrinkles with fine-level details, without shape distortion along the camera view. Please zoom in the figure to better see details.
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Figure 12. We conducted an ablation study where components of ANIM were removed one-by-one to prove the superiority of the proposed

architecture. We show reconstructions of 2 subjects (one from THuman2.0 [60] and the other from RenderPeople [1]) captured by a single-

view RGBD image (i.e. partial view), from frontal and 45-deg side views, with colored normals. Our full ANIM model provides more

accurate results. Please zoom in the figure to better see details.



Input IF-Net PIFu-HD PHORHUM ECON ANIM

Figure 13. Additional comparisons with approaches that use single RGB image or partial point clouds as input. Data from RenderPeople

[1]. ANIM reconstructs full-body models with high accuracy, with cloth wrinkles, face and hand details, and without depth ambiguity (i.e.

distortion along camera view).

Figure 14. Additional comparisons with methods that use a single RGB-D image as input. Our core contributions can leverage state-of-

the-art models, but only our complete ANIM model design returns the best results. We show reconstruction from the front view. Data from

THuman2.0 [60].
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Figure 15. Qualitative comparisons with approaches not illustrated in the main paper that use a single RGB image or partial point clouds

as input. Data from RenderPeople [1].
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Figure 16. Side-views of the 3D shapes reconstructed from an input RGB-D data showed in Fig. 7 and Fig. 14.
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