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6. Implementation Details

6.1. Visual features

We use the pre-extracted Faster R-CNN 2048-dimensional
region features from BUTD [1, 23], which is the standard
convention from prior work in the image-text matching lit-
erature [4, 12]. To transform them to have the same di-
mensions D as the joint embedding space, we implement
a 2-layer MLP with residual connection. The region fea-
tures are then pooled using the GPO [4] pooling operator
into RD.

6.2. Textual features

Bi-GRU. The dimension of the word embedding is set to
300 for both experiments where we initialize the word em-
bedding from GloVe or from scratch (refer to Sec. 8 for ex-
periment of CORA without using GloVe). The GRU has 1
layer and its hidden dimension is also 300.
BERT. Similar to prior work, we use the
bert-base-uncased architecture and pre-trained
weights for the BERT semantic concept encoder. As
mentioned in the main paper, using BERT to encode short
phrases (e.g., construction worker, sitting) does not take
advantage of the full capability of BERT. BERT has never
seen short text during its pre-training stage [8], and with its
ability to capture long-range dependencies, BERT is more
suitable for encoding long sentences. As a result, direct
fine-tuning BERT for CORA leads to slightly lower results.

In our work, instead of fine-tuning the whole BERT
model (with 110M params), we employ the prefix tuning
technique P-Tuning v2 [29] in order to repurpose the pre-
trained BERT model into encoding short phrases. With this
technique, at every BERT encoding layer, a sequence of
learnable N token embeddings RN⇥768 is added as prefix
into the textual prompt. Intuitively, these tokens provide
learnable context that assist BERT into learning the task
at hand, which is encoding short phrases. The number of
trainable params with P-Tuning v2 is only 2N ⇥ L ⇥ 768
(where L = 12 is the number of BERT encoding layers, and
N = 24 is the number of prefix tokens). In our experiment,
we find fine-tuning the last BERT layer along with P-Tuning
gives slightly better results. In overall, the number of train-
able params of our BERT component is only 7M, which is
much smaller than 110M params of the whole BERT model.

For both types of features (Bi-GRU and BERT), we im-
plement an FC layer to transform the semantic encoded out-
put into RD before using them to initialize the node and
edge features of the GATs.

Figure 4. Inference time comparison. We compare the text-to-
image retrieval inference time between our method CORA against
two SOTA cross-attention methods SGRAF [9] and NAAF [57]
(lower is better). The inference time is calculated with different
number of images in the database. CORA with its dual-encoder
architecture is much faster and scalable than cross-attention ap-
proaches.

6.3. Training and hyperparameter details

We use the AdamW optimizer [31] to train our model for
50 epochs. The learning rate is initialized at 5e-4, then de-
cayed to 5e-5 after 15 epochs. The learning rate for the pre-
trained components (i.e., GloVe and BERT) is scaled by 0.1
w.r.t. the base learning rate. We set the batch size to 128
when training on Flickr30K, and 256 when training on MS-
COCO. The margin ↵ in the triplet loss is set to 0.4, while
the cosine similarity in the contrastive loss is scaled by a
temperature of 0.01 similar to CLIP [42]. Following [4],
we perform size augmentation to randomly drop 35% re-
gion features. For data augmentation on the text, we per-
form subsampling on the scene graph by randomly dropping
10% of the nodes and edges and randomly masking 10% of
the word tokens. We set �CON = 0.25 and �SPEC = 3.0.

7. Inference Time

We illustrate in Fig. 4 the inference time comparison be-
tween our method CORA against SOTA cross-attention
methods SGRAF [9] and NAAF [57] with different num-
ber of images in the database (ranging from a very small to
a very large number of images).

To conduct this experiment, for all methods, we first for-
ward all images through the image encoder of each respec-
tive method in order to cache all image embeddings. Then,
for CORA, when a text query arrives, it takes 0.04s to parse
it into a scene graph, 0.014s to compute its scene graph em-



Table 5. Our framework achieves the best results on the

Flickr30K dataset when initializing the word embeddings fom

scratch for the Bi-GRU semantic encoder. Without the CA -
“cross-attention”, our method still has competitive results to other
baselines. † denotes methods that use ensembling of multiple
models, and we highlight the highest and second-highest RSUM.

Method Venue CA Image ! Text Text ! Image RSUM
R@1 R@5 R@10 R@1 R@5 R@10

Faster R-CNN + Bi-GRU

SCAN† [23] ECCV’18 3 67.4 90.3 95.8 48.6 77.7 85.2 465.0
VSRN [24] ICCV’19 71.3 90.6 96.0 54.7 81.8 88.2 482.6
SGM [51] WACV’20 3 71.8 91.7 95.5 53.5 79.6 86.5 478.6
GCN+DIST [25] CVPR’20 3 70.8 92.7 96.0 60.9 86.1 91.0 497.5
GSMN† [28] CVPR’20 3 76.4 94.3 97.3 57.4 82.3 89.0 496.8
CAAN [58] CVPR’20 3 70.1 91.6 97.2 52.8 79.0 87.9 478.6
VSE1 [4] CVPR’21 76.5 94.2 97.7 56.4 83.4 89.9 498.1
SGARF† [9] AAAI’21 3 77.8 94.1 97.4 58.5 83.0 88.8 499.6
MV-VSE† [26] IJCAI’22 79.0 94.9 97.7 59.1 84.6 90.6 505.8
Ours 80.1 95.5 97.7 60.6 85.6 91.1 510.5
Ours

† 81.7 95.5 98.1 62.0 86.6 91.8 515.7

bedding, then 0.01s to perform the vector-matrix multipli-
cation with the image embeddings to find nearest neighbor
results, which in total accounts to around 0.06s per query
for all number of images from 10 to 105. On the other hand,
for cross-attention approaches SGRAF and NAAF, when a
text query arrives, these methods have to pair the text query
with every image embedding in the database, then forward
each pair through the cross-attention module in order to cal-
culate their similarity. Fig. 4 shows that the inference time
for SGRAF and NAAF scale up linearly w.r.t. the num-
ber of images in the database (e.g., SGRAF takes 46s with
104 images, and 470s with 105 images), which is due to
the iterative pairing of the input text with each image. Our
model CORA enjoys the benefit of being fast and scalable
of the dual-encoder architecture, while still achieving better
retrieval results than SOTA cross-attention approaches (e.g.,
SGRAF and NAAF).

8. More Ablation Studies

Initialize from GloVe vs. from scratch. When using Bi-
GRU, we follow all recent studies [12, 20, 30, 35, 49, 57]
to initialize the word embeddings using GloVe [37]. To
fairly compare against other methods prior to these work,
we also report our results when using Bi-GRU with word
embeddings initialized from scratch in Tabs. 5 and 6 for the
Flickr30K and MS-COCO dataset respectively. The results
show that even when initializing the word embeddings from
scratch, our method CORA still outperforms all previous
work with and without cross-attention.
BERT P-Tuning v2. We compare between direct fine-
tuning the whole BERT model against using P-Tuning
v2 [29] to encode short phrases of semantic concepts. The
results are displayed in Tab. 7. Note that this model is ab-
lated without having multi-head self-attention in the visual
encoder.

9. More Analysis

With larger visual backbone. We select ResNeXT-
101 [55] pretrained on the Instagram dataset [33] as the
larger visual extractor than the Faster R-CNN model used in
our main experiments. This visual backbone is also reported
in VSE1 [4] and SDE [20]. The results of this experiment
on the Flickr30K test set are displayed in Tab. 8, where it
shows we obtain a large increase over region features and
others.
Simulate parsing errors. As discussed in the conclusions,
our CORA model is strongly dependent on the scene graph
quality from the parser. To study this dependence, we sim-
ulate errors by performing the followings onto the parsed
graphs: drop word tokens from nodes and edges, move at-
tribute node to wrong object node, and move edge to wrong
object pair. We randomly perform these onto 10%, 20%,
30% F30K captions and achieve 513.2, 512.2, 509.8 RSUM
(original performance is 515.8). We observe that mov-
ing the edge affects performance more than moving the at-
tribute.
Why consider CORA. CORA is a promising graph method
that can supplement what CLIP (& other text encoders) may
struggle against, i.e., sentences with many semantics that
are mixed among objects (discussed in Sec. 1). To show ex-
ample, we select 100 sentences in Flickr30K with the high-
est number of attributes and relations, then evaluate image
retrieval on them. We obtain results respectively for CLIP,
HREM, CORA as 239.3, 240.0, 241.5 RSUM. This shows
the large model CLIP is even slightly inferior to CORA on
sentences that are rich in semantics.
Compare with pretrained image-text models. We scale
up CORA on larger data and compare with prior SOTA
image-text models in Tab. 9. We pretrain CORA on 1M
image-text pairs in Conceptual Captions. All of the mod-
els in the table are finally fine-tuned on Flickr30K. Com-
pared with CORA-BERT (refer to Tab. 1), CORA pre-
trained gets a +6.8 score. Despite smaller data and not
using cross-attention, CORA is better than ViLBERT [32],
UNITER [5], and can potentially reach Unicoder [17] with
more data. However, it is inferior to CLIP zero-shot [42].
This shows the promising ability to scale up CORA further,
e.g. by using ViT instead of regions, CLIP-text instead of
BERT, and more data.

10. Qualitative Results

Image-to-text and image-to-entity retrieval. We illus-
trate some examples of successful and failed results when
performing image-to-text retrieval using our CORA model
with Faster R-CNN + BERT trained on the MS-COCO
dataset in Fig. 5 and Fig. 6. Because CORA also has the
ability to retrieve object entities, we also include image-to-



Table 6. Our framework achieves the best results on the MS-COCO dataset when initializing the word embeddings fom scratch for

the Bi-GRU semantic encoder. Without the CA - “cross-attention”, our method still has competitive results to other baselines. † denotes
methods that use ensembling of multiple models, and we highlight the highest and second-highest RSUM.

Method Venue
Cross-

MS-COCO 5-fold 1K Test MS-COCO 5K Test

Image ! Text Text ! Image RSUM Image ! Text Text ! Image RSUM
Attention R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Faster R-CNN + Bi-GRU

SCAN† [23] ECCV’18 3 72.7 94.8 98.4 58.8 88.4 94.8 507.9 50.4 82.2 90.0 38.6 69.3 80.4 410.9
VSRN [24] ICCV’19 76.2 94.8 98.2 62.8 89.7 95.1 516.8 53.0 81.1 89.4 40.5 70.6 81.1 415.7
SGM [51] WACV’20 3 73.4 93.8 97.8 57.5 87.3 94.3 504.1 50.0 79.3 87.9 35.3 64.9 76.5 393.9
CAAN [58] CVPR’20 3 75.5 95.4 98.5 61.3 89.7 95.2 515.6 52.5 83.3 90.9 41.2 70.3 82.9 421.1
VSE1 [4] CVPR’21 78.5 96.0 98.7 61.7 90.3 95.6 520.8 56.6 83.6 91.4 39.3 69.9 81.1 421.9
SGARF† [9] AAAI’21 3 79.6 96.2 98.5 63.2 90.7 96.1 524.3 57.8 - 91.6 41.9 - 81.3 -
MV-VSE† [26] IJCAI’22 78.7 95.7 98.7 62.7 90.4 95.7 521.9 56.7 84.1 91.4 40.3 70.6 81.6 424.6
Ours 80.5 96.0 98.6 62.9 90.6 96.0 524.6 60.4 85.1 91.7 40.5 70.6 81.2 429.5
Ours

† 81.2 96.2 98.7 63.4 90.9 96.2 526.6 60.9 85.6 92.0 40.8 71.0 81.8 432.1

Table 7. Ablation studies to compare between fine-tuning the
whole BERT model versus using P-Tuning v2 [29] to encode the
short phrases of semantic concepts. The models are evaluated on
the MS-COCO 1K Test set. Gray denotes our best model.

Method Image-to-text Text-to-image RSUMR@1 R@5 R@10 R@1 R@5 R@10

BERT 82.0 96.5 98.8 64.5 91.1 96.2 529.1
BERT P-Tuning, N = 8 81.7 96.5 99.0 64.5 91.1 96.1 528.9
BERT P-Tuning, N = 16 81.4 96.9 98.8 65.0 91.2 96.3 529.6
BERT P-Tuning, N = 24 81.9 96.6 98.9 65.0 91.2 96.4 530.0
BERT P-Tuning, N = 32 82.2 96.7 98.7 64.8 91.3 96.2 529.9

Table 8. Analysis on using the larger visual backbone ResNeXT-
101 [55]. We plug ResNeXT-101 into our CORA model with
BERT as the semantic concept encoder.

Method Image-to-text Text-to-image RSUMR@1 R@5 R@10 R@1 R@5 R@10

CORA-BERT 84.4 96.7 98.7 62.3 87.5 92.5 522.1
CORA-BERT + ResNeXT-101 90.9 99.1 99.8 76.8 95.1 97.7 559.4
VSE1 + ResNeXT-101 [4] 88.7 98.9 99.8 76.1 94.5 97.1 555.1
SDE + ResNeXT-101 [16] 90.6 99.0 99.6 75.9 94.7 97.3 557.1

Table 9. Compare with pre-trained image-text models.

Method RSUM

ViLBERT - NeurIPS’19 - Data: CC3M 502.7
UNITER - ECCV’20 - Data: CC3M, SBU 510.9
UNITER - ECCV’20 - Data: CC3M, SBU, VG, COCO 542.8
Unicoder-VL - AAAI’20 - Data: CC3M, SBU 538.8
CORA-BERT - Data: CC1M 530.1
CLIP zero-shot - ICML’21 - Data: CLIP 400M 540.6

entity retrieval results in the figures. The image-to-entity
retrieval results also help display some of the biases of the
model. One interesting application of image-to-entiy re-
trieval is for auto image tagging.

Among the examples in Fig. 5, the wrong matching texts
and entities are understandable because they are still very
semantically aligned with the input image. We explain each

case below:
1. In the top image, all retrieved captions are correct.

Among the retrieved entities, there are a few incorrect
results which show that the model has not learned very
accurately the visual appearance of receipt, hairbrush,
calendar. Images of toddler holding a hairbrush is com-
mon in the training set, which must have made the model
steered towards aligning hairbrush with something that
a toddler is holding.

2. In the middle image, most matching captions are cor-
rectly retrieved except one that is incorrect due to object
counting. Counting the correct number of objects is in-
deed a challenge for image-text matching model. The
model also mistakenly recognizes the kite as a plane.

3. In the bottom image, the 1st caption is incorrect, but the
model still ranks it at the top due to multiple semantic
information in the text are still correct w.r.t. the image
(e.g., young boy, living room, cat). All other captions are
correctly retrieved. The image-to-entity retrievals show
the concepts that the model does not grasp well.
We continue to explain the failure cases in Fig. 6 as fol-

lowing:
1. In the top image, all of the retrieved captions are incor-

rect matchings as determined by the ground truth data.
However, we notice that the 2nd, 3rd captions still cor-
rectly describe the image to a certain extent. This is a
weakness of the benchmark.

2. In the middle image, the model must have wrongly as-
sociated skin with bikini, hence why it retrieves captions
with bikini at rank 4 and 5. In the entity retrieval results,
interestingly, we notice the model returns dental proce-
dure and dental work. We figure that the model must
have aligned the action of mouth opening with dental,
hence why these two entities are retrieved in this case.

3. In the bottom image, this is again an example of where
the retrieved captions correctly describe the image, but
because the ground truth data specify otherwise, they are



Image-to-text retrieval
1. A baby standing next to a refrigerator reaching for a magnet .
2. A baby standing by a refrigerator with an object in hand .
3. A baby grabs a magnet from the refrigerator .
4. A young child curiously examines a refrigerator magnet .
5. A baby girl playing with magnets on a refrigerator .

Image-to-entity retrieval:
magnet, refrigerator, boy giving, note, receipt, toddler boy, father's perspective, card, hairbrush,
young boy reading, young boy pointing, fridge, curious toddler, baby reaching, calendar

Image-to-text retrieval
1. Five people watch a kite as it flies over a sandy hill .
2. A few people standing on top of a hill flying a kite .
3. Some people are flying a kite on a brown hill .
4. Three people flying a kite in the air during the day .
5. some people standing on a hill with a kite flying above

Image-to-entity retrieval:
couple of people, people standing, sand dune, sandy hill, couple of kids, sand hill, people down below, children,
sand flats, kite flying, sandy plain, sandy desert area, plane flying

Image-to-text retrieval
1. A young boy walking through a living room towards a cat .
2. A man with a backpack on with a cat hanging out of it .
3. A man with a backpack and a cat peeking out from it .
4. The man is carrying the backpack with a kitten in it .
5. A man wearing a back pack with a cat inside of it .

Image-to-entity retrieval:
sweater vest, tabby cat, cat climbing, tiger cat, arm, cat looking upward, tiger suit, long-sleeved shirt, striped cat,
striped shirt, cat looking down, man standing, poised cat, house cat, cat hanging, living room, shoulders

Figure 5. Successful image-to-text and image-to-entity retrieval on MS-COCO. In image-to-text retrieval, green denotes matching
text according to the ground truth of MS-COCO, while red denotes incorrect matching. In image-to-entity retrieval, green and red denote
correct and incorrect matching, respectively, as judged subjectively by us.

considered incorrect by the benchmark.
Text-to-image retrieval results. We illustrate some text-
to-image retrieval results in Fig. 7. In both examples, our
model is able to retrieve the correct image at rank 1. The
images from rank 2 to rank 5 all exhibit visual traits that
match partially with the input text.



Image-to-text retrieval
1. A train stop with a band including a tuba and drum .
2. A brick wall has colorful graffiti on it .
3. A circular piece of architecture is in this city .
4. A man advertises with a giant sign tied onto his bicycle .
5. A man stands with his arms out inside a large green piece of equipment .

Image-to-entity retrieval:
large circular object, giant sign, bicycle, large bike basket, colorful graffiti, ship wheel, caution tape, large metal
sculpture, huge house, hispanic writing, skyscrapers, utility lift, man

Image-to-text retrieval
1. A guy performing a song shirtless with a tattoo of a safety pen on his body with a second tattoo on his body .
2. A tattooed man pours a beer into the mouth of a thin blond man .
3. A tattooed man pouring beer out of a bottle into a young man 's mouth .
4. A lady in a bikini is pouring a drink into a red cup for a man who is wearing trunks and sunglasses .
5. A woman in a bikini is pouring a drink for a man .

Image-to-entity retrieval:
wife beater, muscular man, black weights, black bars, metal bar, two mechanics working, tattoo, shirtless guy,
cowboy, dental procedure, barechested men, dental work, tank top, fitness machine, two shirtless men

Image-to-text retrieval
1. Man falling off of a bucking bull , at a rodeo , in front of spectators .
2. People at a rodeo are watching a cowboy getting thrown from the bull .
3. A man in a rodeo is riding a bull while others watch .
4. A cowboy is riding a bull on a rodeo and is having trouble staying upright .
5. A man is riding a bull in a rodeo .

Image-to-entity retrieval:
bull crashing, mad bull, bull, bull kicking, bull rider jumping, black bull, fiery obstacle, rodeo, spectators watching,
cowboy, dog racing, man falling, people cheering, spectators nearby, horse bucking

Figure 6. Failure cases of image-to-text and image-to-entity retrieval on Flickr30K. In image-to-text retrieval, green denotes matching
text according to the ground truth of Flickr30K, while red denotes incorrect matching. In image-to-entity retrieval, green and red denote
correct and incorrect matching, respectively, as judged subjectively by us.

A large white dog sits on a bench with people next to a path .

A fire hydrant on a cobbled stone sidewalk with a red bus in the distance .

Figure 7. Text-to-image retrieval on MS-COCO. For every text, we show the top-5 retrieved images on MS-COCO. The image with the
green tick mark is the correct matching according to ground truth in the dataset.
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