
A. Implementation Details

A.1. Inpainting algorithm

The pseudocode of the iterative inpainting algorithm de-

scribed in Section 3.2 is given in Algorithm 1. Our imple-

mentation uses µ = 0.8, k = 2, and N = 30. The al-

gorithm repeatedly invokes the INPAINT function, which

stands for an inpainting algorithm based on SDEdit [41] as

implemented in the Diffusers library [55]. For completeness,

we include its pseudocode in Algorithm 0. This algorithm

requires no modification to the diffusion model and resem-

bles standard diffusion sampling except the “imputing” step

in Line 16.

Algorithm 0: Inpainting using Diffusion Model

1: function UPDATE(z, t, ϵ)

2: return
√
³t−1

(

z−
√
1−³tϵ√
³

)

+
√
1− ³t−1ϵ

3: end function

4:

5: // input: latent code of input image zI ,

6: // initial latent code z, // inpainting mask M

7: // conditioning signal (e.g. text, depth map) C

8: // timestep to start denoising (denoising-start).

9: // output: Input image with an inpainted chrome ball.

10: function INPAINT(zI , z,M,C, denoising-start = T)

11: ϵ ∼ N (0, I)
12: for i ∈ {denoising-start, . . . , 1} do

13: ϵ← ϵ¹(z, t,C)
14: z← UPDATE(z, t, ϵ)
15: z

′
I ←

√
³tzI +

√
1− ³tϵ

16: z← (1−M)» z
′
I +M» z

17: end for

18: ϵ← ϵ¹(z, 0,C)
19: z← UPDATE(z, 0, ϵ)
20: return DECODE(z)
21: end function

A.2. HDR merging algorithm

Algorithm 2 merges a bracket of LDR images to create an

HDR image. As mentioned in the main paper, we merge in

the luminance space to avoid ghosting artifacts. Our lumi-

nance conversion assumes sRGB [42] and gamma value of

2.4, following [59].

B. Ablation on Iterative Inpainting Algorithm

B.1. Inpainting iterations

Figure 10 presents additional results demonstrating how our

iterative inpainting algorithm improves the consistency and

quality of the generated chrome balls after one iteration.

Figure 11 presents results with more iterations. Note that the

Algorithm 1: Iterative Inpainting Algorithm

1: function INPAINTBALL(I,M,C, µ, T = 1000)

2: z← ENCODE(I)
3: ϵ ∼ N (0, I)
4: zµT ← √³µT z+

√

1− ³µT ϵ

5: return

INPAINT(z, zµT ,M,C, denoising-start = µT)
6: end function

7:

8: // input: Input image I, binary inpainting mask M,

9: // Conditioning signal (e.g. text, depth map) C

10: // denoising strength γ, number of balls for median N ,

11: // number of median iterations k.

12: // output: Input image with an inpainted chrome ball.

13: function ITERATIVEINPAINT(I,M,C, µ, k,N)

14: for i ∈ {1, . . . , k} do

15: for j ∈ {1, . . . , N} do

16: µ′ ← µ if i > 1 else 1.0
17: Bj ← INPAINTBALL(I,M,C, µ′)
18: end for

19: B← PIXELWISEMEDIAN(B1, . . . ,BN)
20: I← (1−M)» I+M»B

21: end for

22: return INPAINTBALL(I,M, µ)
23: end function

Algorithm 2: HDR Merging Algorithm

1: function LUMINANCE(I, ev, µ = 2.4)

2: return I
µ · [0.21267, 0.71516, 0.07217]¦(2−ev)

3: end function

4:

5: // input: LDR images and a list of exposure values in

6: // descending order, where ev0 = 0. E.g., [0, -2.5, -5]

7: // output: A linearized HDR image.

8: function MERGELDRS(I0, ..., In−1, ev0, ..., evn−1)

9: L← LUMINANCE(In−1, evn−1)
10: for i ∈ {n− 2, n− 1, ..., 0} do

11: Li ← LUMINANCE(Ii, evi)

12: M← CLIP((2
eviLi)−0.9

0.1 , 0, 1)» 1(L > Li)
13: L← (1−M)» Li +M» L

14: end for

15: return I
µ
0 »

(

L

L0

)

16: end function

experiments in our main paper were limited to two iterations

due to our resource constraints.

B.2. Tradeoff between running time and quality

We experimented with various numbers of balls N and itera-

tions k in the iterative inpainting algorithm on the validation

set comprising 100 scenes from the Laval Indoor dataset

#Iterations

(k)

#Balls

(N)

Time

(mins)
si-RMSE ↓

Angular

Error
↓

Normalized

RMSE
↓

1 5 2.5 0.631 5.367 0.416

15 7.5 0.615 5.229 0.410

30 15 0.609 5.210 0.405

2 5 5 0.634 5.393 0.417

15 15 0.615 5.263 0.409

30 30 0.607 5.248 0.403

Table 5. Ablation study on the number of iterations k and balls N .

We report running time and quality metrics on 200 mirror balls in

the validation set. See Figure 9 for qualitative results.

k=1 k=2 k=1 k=2 k=1 k=2

Input #1 (N=30) Input #2 (N=30) Input #3 (N=30)

Figure 9. Qualitative results for the two configurations in Table

5, marked with teal and purple colors. We can halve the running

time with minimal quality degradation by decreasing the number

of iterations k to one.

[20] and 100 scenes from the Poly Haven dataset [3]. As

shown in Table 5, increasing either of them generally leads

to more accurate results. Notably, while two iterations of iter-

ative inpainting (k = 2) deliver the best score, reducing the

number of iterations to one (k = 1) halves the running time

with minimal quality degradation as shown in Figure 9. Note

that we opted for N = 30 and k = 2, which takes about

30 minutes per image on an RTX 3090 Ti GPU, because of

resource constraints.

B.3. Inpainting ball size

We investigated the effects of ball diameter (i.e., white circle)

on the depth maps used by ControlNet. Specifically, we ana-

lyze and compare the efficacy of various ball sizes, ranging

from 128 to 512 pixels in diameter, as illustrated in Figure

12. The result shows that increasing the ball size from 256

to 384 or 512 still results in realistic balls, but they do not re-

flect the environment as convincingly. This is likely because

the original input content seen by the model is reduced. On

the other hand, smaller balls can capture the lighting well

but are less detailed and not as useful.

C. Ablation on LoRA Training

C.1. Additional details on training set generation

To generate training panoramas from text prompts as

mentioned in Section 3.3, we use Text2Light [10], using

prompts from its official GitHub repository‡ and additional

‡https://github.com/FrozenBurning/Text2Light

Median ball

Median ball

Median ball

Figure 10. Chrome balls before (left) and after (right) one iteration

of our iterative inpainting algorithm. Notice how poor chrome balls

are fixed and the light estimation becomes more consistent.

prompts generated by Chat-GPT 3.5§ from short instruc-

tions and examples. To eliminate near-duplicate samples, we

use the perceptual hashing algorithm implemented in the

imagededup package ¶. This process yielded a dataset of

1,412 unique HDR panoramas at resolution of 2048× 4196
pixels. We used orthographic projection and a 60◦ field of

view.

C.2. Range of timesteps for LoRA training

For LoRA training, we sampled from timesteps 900-999 as

we observed that the overall lighting information is deter-

mined earlier in the sampling process (see Figure 13). This

choice helped speed up training. In Table 6, we compare

this choice to training from 0-999 and 500-999 given the

same number of training iterations and report scores on the

same validation set of 200 scenes as in Appendix B.2. Our

choice of 900-999 yielded the best performance across all

three metrics.

C.3. LoRA scale

We conducted an experiment to assess the effect of using

different LoRA scales. Here, the LoRA scale refers to the

³ value in the weight update equation: W′ = W + ³∆W,

where W′ is the new weight for inference, W is the original

weight of SDXL, ∆W is the weight update from LoRA.

(See Section 3.1 for a brief background on LoRA.) In Table

7, we report scores computed on EV0 LDR chrome balls

evaluated on scenes in Poly Haven, which were never part

of Text2Light’s training set. We selected the LoRA scale of

0.75, which has the best si-RMSE and angular error scores,

for our implementation.

§https://chat.openai.com/
¶https://github.com/idealo/imagededup

https://github.com/FrozenBurning/Text2Light
https://chat.openai.com/
https://github.com/idealo/imagededup

Input image Pred#1 Pred#2 Pred#3 Pred#4 Pred#5 Pred#6 Pred#7 Pred#8 Pred#9 Median Ball

1
st

it
er

at
io

n
2
n
d

it
er

at
io

n
3
rd

it
er

at
io

n
4
th

it
er

at
io

n
5
th

it
er

at
io

n
6
th

it
er

at
io

n

Figure 11. Repeatedly applying our iterative inpainting algorithm gradually produces chrome balls with better light estimation and fix

degenerate balls such as Pred#2, Pred#4, and Pred#5.

Ball radius: 128 256 384 512

In
p
u
t

#
1

In
p
u
t

#
2

In
p
u
t

#
2

In
p
u
t

#
2

Median balls for input #1 Median balls for input #2

Ball radius: 128 256 384 512 128 256 384 512

Last

iteration

Last

iteration

Figure 12. Results when varying the ball size (without LoRA).

C.4. Training a single continuous LoRA v.s. multi
ple LoRAs for exposure bracketing

As described in Section 3.3, we train a single continuous

LoRA for multiple EVs by conditioning it on an interpolated

text prompt embedding instead of training multiple LoRAs

for individual EVs. This strategy helps preserve the overall

scene structure across exposures due to weight sharing.

Input 6th step 12th step 18th step 24th step 30th step

Figure 13. The overall lighting is determined at early sampling steps.

Here, we visualize intermediate predictions at various steps during

30-step sampling with UniPC [70]. These intermediate predictions,

or the predicted z0, can be computed from zt at any timestep t

using Equation 1. Each row corresponds to a different random seed.

To show this, we conducted an experiment comparing

results from our LoRA and three separately trained LoRAs

at EVs 0, -2.5, and -5.0. Following the commonly adopted

training pipeline [51] implemented in the Diffusers library

[55], our three LoRAs are trained with the prompt containing

the ‘sks’ token: “a perfect sks mirrored reflective chrome ball

sphere.” We use the same hyperparameters, random seeds,

and HDR panoramas during training. We present results

without our iterative algorithm to isolate the effect of LoRA

in Figure 14. Note that we use a lora scale of 1.0 to apply

In
p
u
t

3 LoRAs Cont. LoRA 3 LoRAs Cont. LoRA 3 LoRAs Cont. LoRA 3 LoRAs Cont. LoRA 3 LoRAs Cont. LoRA

E
V

0
E

V
-2

.5
E

V
-5

.0

Figure 14. Our proposed continuous LoRA training (Cont. LoRA) yields chrome balls with higher detail consistency across different EVs

than results obtained from using three separate LoRAs (3 LoRAs).

Sphere Denoising step si-RMSE ↓
Angular

Error
↓

Normalized

RMSE
↓

Diffuse x0 : x999 0.194 3.322 0.292

x500 : x999 0.188 3.260 0.284

x900 : x999 0.156 2.956 0.246

Matte x0 : x999 0.449 4.121 0.436

x500 : x999 0.452 4.008 0.438

x900 : x999 0.385 3.575 0.371

Mirror x0 : x999 0.727 6.292 0.483

x500 : x999 0.730 6.277 0.479

x900 : x999 0.656 5.464 0.431

Table 6. Ablation study on sampled timesteps for LoRA training.

LoRA scale RMSE ↓ si-RMSE ↓
Angular

Error
↓

0.00 0.232 0.327 6.189

0.25 0.220 0.307 6.287

0.50 0.211 0.303 6.180

0.75 0.204 0.300 6.109

1.00 0.199 0.303 6.267

Table 7. Ablation study on LoRA scales

the same weight residual matrices obtained from the train-

ing. Our LoRA produces chrome balls with better structure

consistency, particularly at EV-5.0.

D. More Comparison with SOTA Inpainting

Techniques

In Figure 2 in Section 2, we provide a qualitative compar-

ison between our approach and existing SOTA diffusion-

based inpainting methods: Blended Diffusion [6, 7], Paint-

by-Example [63], IP-Adapter [64], DALL·E2 [1], Adobe

Firefly [2], and SDXL [45]. In this section, we describe

the experimental settings for these methods. Additionally,

we investigate the behavior of each using different random

seeds.

D.1. Experimental setups

Blended Diffusion, IP-Adapter, and SDXL shared the same

text prompt: “a perfect mirrored reflective chrome ball

sphere.”. We used negative prompt “matte, diffuse, flat, dull”

when executing methods that can accept one: IP-Adapter and

SDXL. We provided Paint-by-Example and IP-Adapter with

reference chrome balls from five randomly selected HDR

environment maps in Poly Haven dataset [3] as shown in

Figure 15. We used the official OpenAI API || for DALL·E2,

and we used the Generative Fill feature in Photoshop for

Adobe Firefly. We followed the default configurations in the

methods’ official implementations as described in Table 8.

D.2. Behavior under different random seeds

We show inpainting results of our method and other base-

lines using different random seeds in Figure 21 and Figure

||https://platform.openai.com/docs/guides/images/

edits-dall-e-2-only

https://platform.openai.com/docs/guides/images/edits-dall-e-2-only
https://platform.openai.com/docs/guides/images/edits-dall-e-2-only

Method Sampler #step cfg

Blended Diffusion DDIM [26] 50 7.5

Paint-by-Example PLMS [35] 50 5.0

IP-Adapter UniPC [70] 30 5.0

SDXL UniPC [70] 30 5.0

Table 8. Sampler, number of sampling steps, and classifier-guidance

scale (cfg) used in different SOTA methods.

Figure 15. Chrome balls used as inputs for Paint-by-Example [63]

and IP-Adapter [64]. We generate them from five randomly selected

HDR environment maps from Poly Haven dataset [3].

22. What we observed in general was that Blend Diffusion

[6, 7] produced distorted balls. Paint-by-Example [63] failed

to reproduce mirrored chrome balls altogether. IP-Adapter

[64] replicated textures and details of the example chrome

balls, making it unsuitable for light estimation. DALL·E2 [1]

often simply reconstructed most of the masked-out content.

Adobe Firefly [2] had a similar problem with DALL·E2 [1],

albeit more severe (see Figure 22). Moreover, none of these

techniques precisely followed the inpainting mask. Our pro-

posed method can address all these issues and consistently

inpaint high-quality chrome balls.

E. Additional Qualitative Results

E.1. Benchmark datasets

This section provides qualitative results for the experiments

in Section 4 in the main paper.

Evaluation on three spheres. We show spheres with

three material types—mirror, matte, and diffuse—rendered

using the inferred environment maps from the following

methods:

1. The ground truth

2. StyleLight [59]

3. Stable Diffusion XL [45] with depth-conditioned Con-

trolNet [69] (SDXL†)

4. SDXL† with our LoRA (SDXL†+LR)

5. SDXL† with our iterative inpainting (SDXL†+I)

6. SDXL† with our LoRA and iterative inpainting

(SDXL†+LR+I)

Qualitative results for the Laval indoor dataset are in Fig-

ure 26-25 and for Poly Haven in Figure 27-29. As discussed

in the main paper, we start with SDXL† to which we add

our LoRA (LR) and iterative inpainting (I) to obtain our

proposed algorithm, SDXL†+LR+I. The methods designated

SDXL†+LR and SDXL†+I are ablated versions of our algo-

rithm.

Evaluation on an array of spheres. We show renderings

of an array of spheres on a plane using our estimated lighting,

following the evaluation protocol from Weber et al. [62]. We

display 24 random test images from a total of 2,240 test

images of the Laval Indoor dataset in Figure 31. Because the

scale of the HDR images our method generates and that of

the test set are different, for visualization purposes, we scale

each output image so that its 0.1st and 99.9th percentiles of

pixel intensity match those of the ground truth. Note that this

scaling does not affect the quantitative scores reported in the

main paper since the metrics are already scale-invariant. The

last row shows challenging test scenes featuring only plain,

solid backgrounds without any shaded objects. Estimating

lighting from such input images is highly ill-posed and multi-

modal. As a result, visual assessment or evaluations using

pixel-based metrics, as used in this protocol, may not be

meaningful for such cases.

E.2. Inthewild images

We present additional qualitative results for in-the-wild

scenes in Figure 32. Our method produces high-quality

chrome balls that harmonize well with diverse scenes and

lighting environments, such as a dim hallway under red neon

lighting, an underwater tunnel with blue-tinted sunlight, a

close-up shot of food, an outdoor view by a coastline, and a

bird’s-eye view from a tall building. Our method also works

on non-realistic images, such as paintings or cartoons, where

visual cues like shading and shadows are present (see Figure

33).

F. Stochastic vs Deterministic Sampling

In Section 3.2, we discuss the relationship between initial

noise maps and semantic patterns of chrome balls. This

mapping is deterministic only when using samplers de-

rived from probability flow ODE, such as DDIM [53] and

UniPC [70]. The “disco” noise map would less consistently

produce “disco” balls if we adopted stochastic samplers

such as DDPM [26], which introduce noise during the sam-

pling process. This section investigates whether degenera-

tion of chrome balls is caused by deterministic sampling and

whether stochastic sampling can help mitigate this issue.

We conducted an experiment comparing results from

DDIM and DDPM using different numbers of sampling steps.

Our results suggest that neither of these schemes consistently

reduces occurrence of bad chrome balls. Specifically, using

stochastic samplers may occasionally produce better chrome

balls than deterministic ones at sufficiently high numbers

of sampling steps (see Figure 16). Unfortunately, they still

yield “disco” balls when starting sampling with the “disco”

noise map, as illustrated in Figure 17.

Input 10 steps 20 steps 40 steps 80 steps 160 steps

Figure 16. Comparison between chrome balls generated using

DDIM [53] (1st row) and DDPM [26] (2nd row) with different

sampling steps. DDPM can sometimes mitigate the occurrence of

bad patterns originating from bad initial noise maps when using

high sampling steps. Prompt: “a chrome ball”.

Input 10 steps 20 steps 40 steps 80 steps 160 steps

Figure 17. Chrome balls generated from the “disco” noise map us-

ing DDPM [26] with different sampling steps. Switching to DDPM

instead of deterministic samplers still produces “disco” balls, even

at high sampling steps. Prompt: “a chrome ball”.

G. Spatially-Varying Light Estimation

In this work, we inpaint a chrome ball in the input’s center

to represent global lighting in the scene and do not model

any spatially varying effects by assuming orthographic pro-

jection. Nonetheless, our preliminary study suggests that the

output from our inpainting pipeline does change according

to where the chrome ball is inpatined, as illustrated in Figure

18. This behavior can be leveraged for spatially-varying light

estimation. To correctly infer spatially-varying, omnidirec-

tional lighting, one needs to also infer the scene geometry,

the depth of the inpainted chrome ball and camera param-

eters such as the focal length from the input image. These

problems are interesting areas for future work.

H. Virtual Object Insertion

Virtual object insertion is a downstream application that

requires light estimation. In Figure 19, we present qualitative

results for two objects from Objaverse-XL [14], rendered

with HDR environment maps obtained through our method.

I. Additional Failure Cases

We present additional failure cases in Figure 20. Our method

occasionally fails to produce chrome balls that accurately

reflect surrounding environments in overhead or bird’s-eye

view images. For instance, the curvature of the horizon line

in the scene with balloons is incorrect. While our method

performs reasonably well for some non-realistic images like

paintings, it struggles with images in drastically different

styles, such as some cartoons and Japanese-style animations,

which significantly differ from the training data of SDXL

[45]. Switching to a fine-tuned model, such as AnimagineXL
**, to leverage a more specialized generative prior can im-

prove its performance on specific image styles.

J. StyleLight’s Score Discrepancies

We used StyleLight’s official implementation to produce

their scores in Table 1. However, there are discrepancies with

their reported scores due to unknown implementations of

their metrics. We discussed this with the authors on GitHub
‡‡ before the submission deadline, and they clarified that ad-

ditional masking of black regions and rotation of panoramas

were performed before evaluation. Despite implementing

these additional steps, we still could not match the scores.

The authors further suggested that we apply a consistent

post-processing technique to all baselines for a fair com-

parison, which resulted in the scores we reported. To en-

sure transparency, we have made our evaluation code avail-

able at https://github.com/DiffusionLight/

DiffusionLight-evaluation.

**https://huggingface.co/Linaqruf/animagine-xl
††https : / / www . kaggle . com / datasets / mylesoneill /

tagged-anime-illustrations/data
‡‡https://github.com/Wanggcong/StyleLight/issues/9

https://github.com/DiffusionLight/DiffusionLight-evaluation
https://github.com/DiffusionLight/DiffusionLight-evaluation
https://huggingface.co/Linaqruf/animagine-xl
https://www.kaggle.com/datasets/mylesoneill/tagged-anime-illustrations/data
https://www.kaggle.com/datasets/mylesoneill/tagged-anime-illustrations/data
https://github.com/Wanggcong/StyleLight/issues/9

Input image Prediction Median ball (1st iteration) Median ball (2nd iteration)

Figure 18. We show the spatially varying effects of painting a chrome ball at nine different locations, specified by red dots in the input

images. For each input image, we present predictions from a random seed and median balls at the 1st and 2nd iterations. The effects can be

seen in the changes of the curvature the horizon line, the size of the window, and the position of the light reflected from the lamp. These

effects are more apparent in median balls as the number of iterations increases.

Input object Before relighting After relighting

Figure 19. We synthetically render each 3D object into input images using our estimated lighting.

(a) Overhead and bird’s-eye view images

(b) Images with significant style difference from natural photos

(c) Marcro and close-up images

(d) High-key and low-key images with solid backgrounds

Figure 20. Failure modes: (a) Our method may produce unrealistic chrome balls in overhead and bird’s-eye view images, leading to

incorrect curvature in the horizon line. (b) The chrome balls may not harmonize well with inputs whose styles differ significantly from

natural photos. (c) Macro and close-up images can lack sufficient shading cues, leading to less convincing estimates. (d) Images with empty

or solid backgrounds often cause our method to hallucinate some details onto the balls, and the balls may appear too dark, especially on a

white background. These images are from Unsplash (www.unsplash.com), Kaggle ††, or other websites under the CC 4.0 license.

In
p
u
t

im
ag

e

B
le

n
d
ed

D
if

-
fu

si
o
n

[6
,
7
]

P
ai

n
t-

b
y
-E

x

am
p
le

[6
3
]

IP
-A

d
ap

te
r

[6
4

]

D
A

L
L

·E
2

[1
]

A
d
o
b
e

F
ir

efl
y

[2
]

S
D

X
L

[4
5

]
O

u
r
s

Figure 21. Chrome ball inpainting results from various methods. The red circle indicates the inpainted region, and we show a zoomed-in

view of the blue crop. Each row contains results from ten different random seeds.

In
p
u
t

im
ag

e

B
le

n
d
ed

D
if

-
fu

si
o
n

[6
,
7
]

P
ai

n
t-

b
y
-E

x

am
p
le

[6
3
]

IP
-A

d
ap

te
r

[6
4

]

D
A

L
L

·E
2

[1
]

A
d
o
b
e

F
ir

efl
y

[2
]

S
D

X
L

[4
5

]
O

u
r
s

Figure 22. Chrome ball inpainting results from various methods. The red circle indicates the inpainted region, and we show a zoomed-in

view of the blue crop. Each row contains results from ten different random seeds.

Ground truth map Input Ground truth StyleLight [59] SDXL† SDXL†+LR

(ours, ablated)

SDXL†+I

(ours,ablated)

SDXL†+LR+I

(ours)

Figure 23. Qualitative results for the Laval indoor dataset using mirror balls.

Ground truth map Input Ground truth StyleLight [59] SDXL† SDXL†+LR

(ours, ablated)

SDXL†+I

(ours,ablated)

SDXL†+LR+I

(ours)

Figure 24. Qualitative results for the Laval indoor dataset using matte balls.

Ground truth map Input Ground truth StyleLight [59] SDXL† SDXL†+LR

(ours, ablated)

SDXL†+I

(ours,ablated)

SDXL†+LR+I

(ours)

Figure 25. Qualitative results for the Laval indoor dataset using diffuse balls.

Input Ground truth StyleLight [59] SDXL† SDXL†+LR+I

(ours)

Figure 26. Unwarped equirectangular maps for the Laval indoor dataset.

Ground truth map Input Ground truth StyleLight [59] SDXL† SDXL†+LR

(ours, ablated)

SDXL†+I

(ours,ablated)

SDXL†+LR+I

(ours)

Figure 27. Qualitative results for the Poly Haven dataset using mirror balls.

Ground truth map Input Ground truth StyleLight [59] SDXL† SDXL†+LR

(ours, ablated)

SDXL†+I

(ours,ablated)

SDXL†+LR+I

(ours)

Figure 28. Qualitative results for the Poly Haven dataset using matte balls.

Ground truth map Input Ground truth StyleLight [59] SDXL† SDXL†+LR

(ours, ablated)

SDXL†+I

(ours,ablated)

SDXL†+LR+I

(ours)

Figure 29. Qualitative results for the Poly Haven dataset using diffuse balls.

Input Ground truth StyleLight [59] SDXL† SDXL†+LR+I

(ours)

Figure 30. Unwrapped equirectangular maps for the Poly Haven dataset.

Ground truth map Input Ground Truth Ours (scaled) Ground truth map Input Ground Truth Ours (scaled)

Figure 31. Qualitative results for the Laval indoor dataset using an array of spheres.

Figure 32. Additional qualitative results for in-the-wild scenes. For each input, we show a chrome ball generated from our pipeline and its

underexposed version.

Figure 33. Qualitative results for artificial images such as paintings and painting-like Japanese animation-style images. For each input, we

show a chrome ball generated from our pipeline and its underexposed version. Our proposed method can still perform reasonably well, albeit

with some performance degradation, by leveraging the strong generative prior of SDXL [45].

